Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
2.
EMBO J ; 42(23): e114188, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37916874

ABSTRACT

Hyper IgM1 is an X-linked combined immunodeficiency caused by CD40LG mutations, potentially treatable with CD4+ T-cell gene editing with Cas9 and a "one-size-fits-most" corrective template. Contrary to established gene therapies, there is limited data on the genomic alterations following long-range gene editing, and no consensus on the relevant assays. We developed drop-off digital PCR assays for unbiased detection of large on-target deletions and found them at high frequency upon editing. Large deletions were also common upon editing different loci and cell types and using alternative Cas9 and template delivery methods. In CD40LG edited T cells, on-target deletions were counter-selected in culture and further purged by enrichment for edited cells using a selector coupled to gene correction. We then validated the sensitivity of optical genome mapping for unbiased detection of genome wide rearrangements and uncovered on-target trapping of one or more vector copies, which do not compromise functionality, upon editing using an integrase defective lentiviral donor template. No other recurring events were detected. Edited patient cells showed faithful reconstitution of CD40LG regulated expression and function with a satisfactory safety profile. Large deletions and donor template integrations should be anticipated and accounted for when designing and testing similar gene editing strategies.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , Genome , T-Lymphocytes , CD4-Positive T-Lymphocytes
3.
Mol Ther Methods Clin Dev ; 30: 546-557, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37693944

ABSTRACT

Hyper-IgM1 is a rare X-linked combined immunodeficiency caused by mutations in the CD40 ligand (CD40LG) gene with a median survival of 25 years, potentially treatable with in situ CD4+ T cell gene editing with Cas9 and a one-size-fits-most corrective donor template. Here, starting from our research-grade editing protocol, we pursued the development of a good manufacturing practice (GMP)-compliant, scalable process that allows for correction, selection and expansion of edited cells, using an integrase defective lentiviral vector as donor template. After systematic optimization of reagents and conditions we proved maintenance of stem and central memory phenotypes and expression and function of CD40LG in edited healthy donor and patient cells recapitulating the physiological CD40LG regulation. We then documented the preserved fitness of edited cells by xenotransplantation into immunodeficient mice. Finally, we transitioned to large-scale manufacturing, and developed a panel of quality control assays. Overall, our GMP-compliant process takes long-range gene editing one step closer to clinical application with a reassuring safety profile.

4.
Blood ; 142(9): 812-826, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37294917

ABSTRACT

Ex vivo gene editing in T cells and hematopoietic stem/progenitor cells (HSPCs) holds promise for treating diseases. Gene editing encompasses the delivery of a programmable editor RNA or ribonucleoprotein, often achieved ex vivo via electroporation, and when aiming for homology-driven correction of a DNA template, often provided by viral vectors together with a nuclease editor. Although HSPCs activate a robust p53-dependent DNA damage response upon nuclease-based editing, the responses triggered in T cells remain poorly characterized. Here, we performed comprehensive multiomics analyses and found that electroporation is the main culprit of cytotoxicity in T cells, causing death and cell cycle delay, perturbing metabolism, and inducing an inflammatory response. Nuclease RNA delivery using lipid nanoparticles (LNPs) nearly abolished cell death and ameliorated cell growth, improving tolerance to the procedure and yielding a higher number of edited cells compared with using electroporation. Transient transcriptomic changes upon LNP treatment were mostly caused by cellular loading with exogenous cholesterol, whose potentially detrimental impact could be overcome by limiting exposure. Notably, LNP-based HSPC editing dampened p53 pathway induction and supported higher clonogenic activity and similar or higher reconstitution by long-term repopulating HSPCs compared with electroporation, reaching comparable editing efficiencies. Overall, LNPs may allow efficient and harmless ex vivo gene editing in hematopoietic cells for the treatment of human diseases.


Subject(s)
Gene Editing , Tumor Suppressor Protein p53 , Humans , Gene Editing/methods , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Hematopoietic Stem Cells/metabolism , RNA/metabolism , CRISPR-Cas Systems
5.
Methods Mol Biol ; 2668: 69-98, 2023.
Article in English | MEDLINE | ID: mdl-37140791

ABSTRACT

The development of an extracellular vesicles (EV)-based therapeutic product requires the implementation of reproducible and scalable, purification protocols for clinical-grade EV. Commonly used isolation methods including ultracentrifugation, density gradient centrifugation, size exclusion chromatography, and polymer-based precipitation, faced limitations such as yield efficiency, EV purity, and sample volume. We developed a GMP-compatible method for the scalable production, concentration, and isolation of EV through a strategy involving, tangential flow filtration (TFF). We applied this purification method for the isolation of EV from conditioned medium (CM) of cardiac stromal cells, namely cardiac progenitor cells (CPC) which has been shown to possess potential therapeutical application in heart failure. Conditioned medium collection and EV isolation using TFF demonstrated consistent particle recovery (~1013 particle/mL) enrichment of small/medium-EV subfraction (range size 120-140 nm). EV preparations achieved a 97% reduction of major protein-complex contaminant and showed unaltered biological activity. The protocol describes methods to assess EV identity and purity as well as procedures to perform downstream applications including functional potency assay and quality control tests. The large-scale manufacturing of GMP-grade EV represents a versatile protocol that can be easily applied to different cell sources for wide range of therapeutic areas.


Subject(s)
Extracellular Vesicles , Culture Media, Conditioned/analysis , Extracellular Vesicles/chemistry , Filtration , Ultracentrifugation
6.
Methods Mol Biol ; 2286: 131-166, 2021.
Article in English | MEDLINE | ID: mdl-33381854

ABSTRACT

Cardiac explant-derived cells (cEDC), also referred as cardiac progenitors cells (CPC) (Barile et al., Cardiovasc Res 103(4):530-541, 2014; Barile et al., Cardiovasc Res 114(7):992-1005, 2018), represent promising candidates for the development of cell-based therapies, a novel and interesting treatment for cardioprotective strategy in heart failure (Kreke et al., Expert Rev Cardiovasc Ther 10(9):1185-1194, 2012). CPC have been tested in a preclinical setting for direct cell transplantation and tissue engineering or as a source for production of extracellular vesicles (EV) (Oh et al., J Cardiol 68(5):361-367, 2016; Barile et al., Eur Heart J 38(18):1372-1379, 2017; Rosen et al., J Am Coll Cardiol 64(9):922-937, 2014). CPC cultured as cardiospheres derived cells went through favorable Phase 1 and 2 studies demonstrating safety and possible efficacy (Makkar et al., Lancet 379(9819):895-904, 2012; Ishigami et al., Circ Res 120(7):1162-1173, 2017; Ishigami et al., Circ Res 116 (4):653-664, 2015; Tarui et al., J Thorac Cardiovasc Surg 150(5):1198-1207, 1208 e1191-1192, 2015). In this context and in view of clinical applications, cells have to be prepared and released according to Good Manufacturing Practices (GMP) (EudraLex-volume 4-good manufacturing practice (GMP) guidelines-Part I-basic requirements for medicinal products. http://ec.europa.eu/health/documents/eudralex/vol-4 ; EudraLex-volume 4-good manufacturing practice (GMP) guidelines-Part IV-guidelines on good manufacturing practices specific to advanced therapy medicinal products. http://ec.europa.eu/health/documents/eudralex/vol-4 ). This chapter describes GMP-grade methods for production and testing of a CPC Master Cell Bank (MCB), consisting of frozen aliquots of cells that may be used either as a therapeutic product or as source for the manufacturing of Exo for clinical trials.The MCB production method has been designed to isolate and expand CPC from human cardiac tissue in xeno-free conditions (Andriolo et al., Front Physiol 9:1169, 2018). The quality control (QC) methods have been implemented to assess the safety (sterility, endotoxin, mycoplasma, cell senescence, tumorigenicity) and identity/potency/purity (cell count and viability, RT-PCR, immunophenotype) of the cells (Andriolo et al., Front Physiol 9:1169, 2018).


Subject(s)
Biomedical Technology/standards , Myoblasts/cytology , Myocytes, Cardiac/cytology , Primary Cell Culture/methods , Biological Specimen Banks/standards , Biomedical Technology/methods , Cells, Cultured , Humans , Practice Guidelines as Topic , Primary Cell Culture/standards , Tissue Preservation/standards
7.
Front Physiol ; 9: 1169, 2018.
Article in English | MEDLINE | ID: mdl-30197601

ABSTRACT

Exosomes, nanosized membrane vesicles secreted by cardiac progenitor cells (Exo-CPC), inhibit cardiomyocyte apoptosis under stress conditions, promote angiogenesis in vitro, and prevent the early decline in cardiac function after myocardial infarction in vivo in preclinical rat models. The recognition of exosome-mediated effects has moved attempts at developing cell-free approaches for cardiac repair. Such approaches offer major advantages including the fact that exosomes can be stored as ready-to-use agents and delivered to patients with acute coronary syndromes. The aim of the present work was the development of a good manufacturing practice (GMP)-grade method for the large-scale preparation of Exo-CPC as a medicinal product, for a future clinical translation. A GMP-compliant manufacturing method was set up, based on large-scale cell culture in xeno-free conditions, collection of up to 8 l of exosome-containing conditioned medium and isolation of Exo-CPC through tangential flow filtration. Quality control tests were developed and carried out to evaluate safety, identity, and potency of both cardiac progenitor cells (CPC) as cell source and Exo-CPC as final product (GMP-Exo-CPC). CPC, cultured in xeno-free conditions, showed a lower doubling-time than observed in research-grade condition, while producing exosomes with similar features. Cells showed the typical phenotype of mesenchymal progenitor cells (CD73/CD90/CD105 positive, CD14/CD20/CD34/CD45/HLA-DR negative), and expressed mesodermal (TBX5/TBX18) and cardiac-specific (GATA4/MESP1) transcription factors. Purified GMP-Exo-CPC showed the typical nanoparticle tracking analysis profile and expressed main exosome markers (CD9/CD63/CD81/TSG101). The GMP manufacturing method guaranteed high exosome yield (>1013 particles) and consistent removal (≥97%) of contaminating proteins. The resulting GMP-Exo-CPC were tested for safety, purity, identity, and potency in vitro, showing functional anti-apoptotic and pro-angiogenic activity. The therapeutic efficacy was validated in vivo in rats, where GMP-Exo-CPC ameliorated heart function after myocardial infarction. Our standardized production method and testing strategy for large-scale manufacturing of GMP-Exo-CPC open new perspectives for reliable human therapeutic applications for acute myocardial infarction syndrome and can be easily applied to other cell sources for different therapeutic areas.

8.
Circ Res ; 119(3): 481-90, 2016 Jul 22.
Article in English | MEDLINE | ID: mdl-27267068

ABSTRACT

RATIONALE: Intracoronary delivery of autologous bone marrow-derived mononuclear cells (BM-MNC) may improve remodeling of the left ventricle (LV) after acute myocardial infarction (AMI). OBJECTIVE: To demonstrate long-term efficacy of BM-MNC treatment after AMI. METHODS AND RESULTS: In a multicenter study, we randomized 200 patients with large AMI in a 1:1:1 pattern into an open-labeled control and 2 BM-MNC treatment groups. In the BM-MNC groups, cells were either administered 5 to 7 days (early) or 3 to 4 weeks (late) after AMI. Cardiac magnetic resonance imaging was performed at baseline and after 12 months. The current analysis investigates the change from baseline to 12 months in global LV ejection fraction, LV volumes, scar size, and N-terminal pro-brain natriuretic peptide values comparing the 2 treatment groups with control in a linear regression model. Besides the complete case analysis, multiple imputation analysis was performed to address for missing data. Furthermore, the long-term clinical event rate was computed. The absolute change in LV ejection fraction from baseline to 12 months was -1.9±9.8% for control (mean±SD), -0.9±10.5% for the early treatment group, and -0.7±10.1% for the late treatment group. The difference between the groups was not significant, both for complete case analysis and multiple imputation analysis. A combined clinical end point occurred equally in all the groups. Overall, 1-year mortality was low (2.25%). CONCLUSIONS: Among patients with AMI and LV dysfunction, treatment with BM-MNC either 5 to 7 days or 3 to 4 weeks after AMI did not improve LV function at 12 months, compared with control. The results are limited by an important drop out rate. CLINICAL TRIAL REGISTRATION INFORMATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00355186.


Subject(s)
Bone Marrow Transplantation/methods , Leukocytes, Mononuclear/transplantation , Magnetic Resonance Imaging, Cine/methods , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/therapy , Bone Marrow Transplantation/trends , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging, Cine/trends , Male , Myocardial Infarction/epidemiology , Switzerland/epidemiology , Time Factors , Treatment Outcome
9.
Methods Mol Biol ; 1416: 313-37, 2016.
Article in English | MEDLINE | ID: mdl-27236681

ABSTRACT

Mesenchymal stromal/stem cells (MSC) are promising candidates for the development of cell-based therapies for various diseases and are currently being evaluated in a number of clinical trials (Sharma et al., Transfusion 54:1418-1437, 2014; Ikebe and Suzuki, Biomed Res Int 2014:951512, 2014). MSC for therapeutic applications are classified as advanced therapy medicinal products (ATMP) (Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004) and must be prepared according to good manufacturing practices ( http://ec.europa.eu/health/documents/eudralex/vol-4 ). They may be derived from different starting materials (mainly bone marrow (BM), adipose tissue, or cord blood) and applied as fresh or cryopreserved products, in the autologous as well as an allogeneic context (Sharma et al., Transfusion 54:1418-1437, 2014; Ikebe and Suzuki, Biomed Res Int 2014:951512, 2014; Sensebé and Bourin, Transplantation 87(9 Suppl):S49-S53, 2009). In any case, they require an approved and well-defined panel of assays in order to be released for clinical use.This chapter describes analytical methods implemented and performed in our cell factory as part of the release strategy for an ATMP consisting of frozen autologous BM-derived MSC. Such methods are designed to assess the safety (sterility, endotoxin, and mycoplasma assays) and identity/potency (cell count and viability, immunophenotype and clonogenic assay) of the final product. Some assays are also applied to the biological starting material (sterility) or carried out as in-process controls (sterility, cell count and viability, immunophenotype, clonogenic assay).The validation strategy for each analytical method is described in the accompanying Chapter 20 .


Subject(s)
Manufactured Materials/standards , Mesenchymal Stem Cells/cytology , Quality Control , Cell Count , Cell Culture Techniques , Cell Proliferation , Cell Survival , Cells, Cultured , Clinical Trials as Topic , Cryopreservation , Endotoxins/analysis , Guideline Adherence , Guidelines as Topic , Humans , Immunophenotyping , Mesenchymal Stem Cells/microbiology , Microbiological Techniques/methods
10.
Methods Mol Biol ; 1416: 339-56, 2016.
Article in English | MEDLINE | ID: mdl-27236682

ABSTRACT

The present chapter focuses on the validation of the following analytical methods for the control of mesenchymal stromal cells (MSC) for cell therapy clinical trials: Microbiological control for cellular product Endotoxin assay Mycoplasma assay Cell count and viability Immunophenotype Clonogenic potential (CFU-F assay) In our lab, these methods are in use for product release, process control or control of the biological starting materials. They are described in detail in the accompanying Chapter 19.For each method, validation goals and strategy are presented, and a detailed experimental scheme is proposed.


Subject(s)
Endotoxins/analysis , Mesenchymal Stem Cells/cytology , Quality Control , Bacteria/isolation & purification , Cell Count , Cell Culture Techniques/methods , Cell Survival , Cells, Cultured , Humans , Immunophenotyping , Mesenchymal Stem Cells/microbiology , Microbiological Techniques , Mycoplasma/isolation & purification
11.
Front Pharmacol ; 6: 76, 2015.
Article in English | MEDLINE | ID: mdl-25954199

ABSTRACT

Allogeneic stem cell transplantation (allo-HSCT) is one of the curative treatments for hematologic malignancies, but is hampered by severe complications, such as acute or chronic graft-versus-host-disease (aGvHD; cGvHD) and infections. CD34-selection of stem cells reduces the risk of aGvHD, but also leads to increased infectious complications and relapse. Thus, we studied the safety, efficacy, and feasibility of transfer of gene modified donor T-cells shortly after allo-HSCT in two clinical trials between 2002 and 2007 and here we compare the results to unmodified donor leukocyte infusion (DLI). The aim of these trials was to provide patients with the protection of T-cells after T-cell-depleted allo-HSCT in the matched or mismatched donor setting with an option to delete transduced T-cells, if severe aGvHD occurred within the trial period. Donor-T-cells were transduced with the replication-deficient retrovirus SFCMM-3, expressing HSV-TK and the truncated ΔLNGFR for selection of transduced cells. Transduced cells were transfused either after day +60 (matched donors) or on day +42 (haploidentical donors). Nine patients were included in the first trial (MHH; 2002 until 2007), two were included in TK007 (2005-2009) and six serves as a control group for outcome after haploidentical transplantation without HSV-TK-transduced DLI. Three patients developed acute GvHD, two had grade I of the skin, one had aGvHD on day +131 (post-HSCT; +89 post-HSV-TK DLI) grade II, which was successfully controlled by ganciclovir (GCV). Donor chimerism was stabilized after transfusion of the transduced cells in all patients treated. Functionality of HSV-TK gene expressing T-cells was shown by loss of bcr-able gene expression as well as by control of cytomegalovirus-reactivation. To date, six patients have relapsed and died, two after a second hematopoietic stem cell transplantation without T-cell depletion or administration of unmodified T-cells. Eleven patients (seven post-HSV-TK DLI) are alive and well to date.

12.
J Transl Med ; 12: 276, 2014 Sep 27.
Article in English | MEDLINE | ID: mdl-25260977

ABSTRACT

BACKGROUND: Cardiovascular cell therapy represents a promising field, with several approaches currently being tested. The advanced therapy medicinal product (ATMP) for the ongoing METHOD clinical study ("Bone marrow derived cell therapy in the stable phase of chronic ischemic heart disease") consists of fresh mononuclear cells (MNC) isolated from autologous bone marrow (BM) through density gradient centrifugation on standard Ficoll-Paque. Cells are tested for safety (sterility, endotoxin), identity/potency (cell count, CD45/CD34/CD133, viability) and purity (contaminant granulocytes and platelets). METHODS: BM-MNC were isolated by density gradient centrifugation on Ficoll-Paque. The following process parameters were optimized throughout the study: gradient medium density; gradient centrifugation speed and duration; washing conditions. RESULTS: A new manufacturing method was set up, based on gradient centrifugation on low density Ficoll-Paque, followed by 2 washing steps, of which the second one at low speed. It led to significantly higher removal of contaminant granulocytes and platelets, improving product purity; the frequencies of CD34+ cells, CD133+ cells and functional hematopoietic and mesenchymal precursors were significantly increased. CONCLUSIONS: The methodological optimization described here resulted in a significant improvement of ATMP quality, a crucial issue to clinical applications in cardiovascular cell therapy.


Subject(s)
Bone Marrow Cells/cytology , Cardiovascular Diseases/therapy , Cell Separation/methods , Cell Separation/standards , Cell- and Tissue-Based Therapy , Cell Count , Centrifugation, Density Gradient , Humans , Immunophenotyping , Reproducibility of Results
13.
Clin Cardiol ; 36(8): 435-41, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23720276

ABSTRACT

BACKGROUND: Treatment with bone marrow-derived mononuclear cells (BM-MNC) may improve left ventricular (LV) function in patients with chronic ischemic heart disease (IHD). Delivery method of the cell product may be crucial for efficacy. HYPOTHESIS: We aimed to demonstrate that the combination of intramyocardial and intracoronary injection of BM-MNC is safe and improves LV function in patients with chronic IHD. METHODS: After a safety/feasibility phase of 10 patients, 54 patients will be randomly assigned in a 1:1:1 pattern to 1 control and 2 BM-MNC treatment groups. The control group will be treated with state-of-the-art medical management. The treatment groups will receive either exclusively intramyocardial injection or a combination of intramyocardial and intracoronary injection of autologous BM-MNC. Left ventricular function as well as scar size, transmural extension, and regional wall-motion score will be assessed by cardiac magnetic resonance imaging studies at baseline and after 6 months. The primary endpoint is the change in global LV ejection fraction by cardiac magnetic resonance from 6 months to baseline. RESULTS: The results, it is hoped, will have important clinical impact and provide essential information to improve the design of future regenerative-medicine protocols in cardiology. CONCLUSIONS: As cell delivery may play an important role in chronic IHD, we aim to demonstrate feasibility and efficacy of a combined cell-delivery approach in patients with decreased LV function.


Subject(s)
Bone Marrow Transplantation/methods , Leukocytes, Mononuclear/transplantation , Myocardial Ischemia/surgery , Research Design , Chronic Disease , Clinical Protocols , Feasibility Studies , Humans , Injections , Magnetic Resonance Imaging , Myocardial Contraction , Myocardial Ischemia/diagnosis , Myocardial Ischemia/physiopathology , Myocardium/pathology , Recovery of Function , Stroke Volume , Switzerland , Time Factors , Treatment Outcome , Ventricular Function, Left
14.
Circulation ; 127(19): 1968-79, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23596006

ABSTRACT

BACKGROUND: Intracoronary administration of autologous bone marrow-derived mononuclear cells (BM-MNC) may improve remodeling of the left ventricle (LV) after acute myocardial infarction. The optimal time point of administration of BM-MNC is still uncertain and has rarely been addressed prospectively in randomized clinical trials. METHODS AND RESULTS: In a multicenter study, we randomized 200 patients with large, successfully reperfused ST-segment elevation myocardial infarction in a 1:1:1 pattern into an open-labeled control and 2 BM-MNC treatment groups. In the BM-MNC groups, cells were administered either early (i.e., 5 to 7 days) or late (i.e., 3 to 4 weeks) after acute myocardial infarction. Cardiac magnetic resonance imaging was performed at baseline and after 4 months. The primary end point was the change from baseline to 4 months in global LV ejection fraction between the 2 treatment groups and the control group. The absolute change in LV ejection fraction from baseline to 4 months was -0.4±8.8% (mean±SD; P=0.74 versus baseline) in the control group, 1.8±8.4% (P=0.12 versus baseline) in the early group, and 0.8±7.6% (P=0.45 versus baseline) in the late group. The treatment effect of BM-MNC as estimated by ANCOVA was 1.25 (95% confidence interval, -1.83 to 4.32; P=0.42) for the early therapy group and 0.55 (95% confidence interval, -2.61 to 3.71; P=0.73) for the late therapy group. CONCLUSIONS: Among patients with ST-segment elevation myocardial infarction and LV dysfunction after successful reperfusion, intracoronary infusion of BM-MNC at either 5 to 7 days or 3 to 4 weeks after acute myocardial infarction did not improve LV function at 4-month follow-up. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00355186.


Subject(s)
Bone Marrow Cells/physiology , Bone Marrow Transplantation/methods , Leukocytes, Mononuclear/transplantation , Myocardial Infarction/surgery , Ventricular Function, Left/physiology , Adult , Aged , Female , Follow-Up Studies , Humans , Injections , Leukocytes, Mononuclear/physiology , Male , Middle Aged , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Time Factors , Treatment Outcome
15.
Mol Ther ; 21(1): 175-84, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22371846

ABSTRACT

Gene therapy with ex vivo-transduced hematopoietic stem/progenitor cells may represent a valid therapeutic option for monogenic immunohematological disorders such as Wiskott-Aldrich syndrome (WAS), a primary immunodeficiency associated with thrombocytopenia. We evaluated the preclinical safety and efficacy of human CD34(+) cells transduced with lentiviral vectors (LV) encoding WAS protein (WASp). We first set up and validated a transduction protocol for CD34(+) cells derived from bone marrow (BM) or mobilized peripheral blood (MPB) using a clinical grade, highly purified LV. Robust transduction of progenitor cells was obtained in normal donors and WAS patients' cells, without evidence of toxicity. To study biodistribution of human cells and exclude vector release in vivo, LV-transduced CD34(+) cells were transplanted in immunodeficient mice, showing a normal engraftment and differentiation ability towards transduced lymphoid and myeloid cells in hematopoietic tissues. Vector mobilization to host cells and transmission to germline cells of the LV were excluded by different molecular assays. Analysis of vector integrations showed polyclonal integration patterns in vitro and in human engrafted cells in vivo. In summary, this work establishes the preclinical safety and efficacy of human CD34(+) cells gene therapy for the treatment of WAS.


Subject(s)
Antigens, CD34/immunology , Bone Marrow Cells/cytology , Bone Marrow Transplantation , Genetic Vectors , Lentivirus/genetics , Transduction, Genetic , Wiskott-Aldrich Syndrome/therapy , Animals , Bone Marrow Cells/immunology , Mice , Mice, Knockout
16.
Blood ; 117(24): 6469-78, 2011 Jun 16.
Article in English | MEDLINE | ID: mdl-21531977

ABSTRACT

In allogeneic hematopoietic cell transplantation (HSCT), donor T lymphocytes mediate the graft-versus-leukemia (GVL) effect, but induce graft-versus-host disease (GVHD). Suicide gene therapy-that is, the genetic induction of a conditional suicide phenotype into donor T cells-allows dissociating the GVL effect from GVHD. Genetic modification with retroviral vectors after CD3 activation reduces T-cell alloreactivity. We recently found that alloreactivity is maintained when CD28 costimulation, IL-7, and IL-15 are added. Herein, we used the minor histocompatibility (mH) antigens HA-1 and H-Y as model alloantigens to directly explore the antileukemia efficacy of human T cells modified with the prototypic suicide gene herpes simplex virus thymidine kinase (tk) after activation with different stimuli. Only in the case of CD28 costimulation, IL-7, and IL-15, the repertoire of tk(+) T cells contained HA-1- and H-Y-specific CD8(+) cytotoxic T cells (CTL) precursors. Thymidine kinase-positive HA-1- and H-Y-specific CTLs were capable of self-renewal and differentiation into potent antileukemia effectors in vitro, and in vivo in a humanized mouse model. Self-renewal and differentiation coincided with IL-7 receptor expression. These results pave the way to the clinical investigation of T cells modified with a suicide gene after CD28 costimulation, IL-7, and IL-15 for a safe and effective GVL effect.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Cell Proliferation , Genes, Transgenic, Suicide/immunology , Leukemia/diagnosis , Receptors, Interleukin-7/physiology , Animals , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Female , Gene Expression/physiology , Genetic Therapy/methods , Genetic Vectors/immunology , Humans , Immunotherapy, Adoptive/methods , Leukemia/genetics , Leukemia/immunology , Leukemia/therapy , Mice , Mice, Inbred NOD , Mice, SCID , Prognosis , Receptors, Interleukin-7/genetics , Receptors, Interleukin-7/metabolism , T-Cell Antigen Receptor Specificity/genetics , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Cytotoxic/physiology , Transplantation, Homologous
17.
Hum Gene Ther ; 22(7): 829-41, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21091264

ABSTRACT

Seven patients with acute myeloid leukemia (AML) and two patients with chronic myelogenous leukemia (CML) were transplanted from HLA-identical sibling donors with CD34(+) cell-enriched stem cells (HSCTs) without further immunosuppression. The myeloablative standard transplantation protocol was adapted to include transfusion of gene-modified donor T cells after HSCT. Donor T cells were transduced with the replication-deficient retrovirus SFCMM-3, which expresses herpes simplex thymidine kinase (HSV-Tk) and a truncated version of low-affinity nerve growth factor receptor (ΔLNGFR) for selection and characterization of transduced cells. Transduced T cells were detectable in all patients during follow-up for up to 5 years after transfusion. Proteomic screening for development of acute graft-versus-host disease (aGvHD) was applied to five of the seven patients with AML. No positivity for the aGvHD grade II-specific proteomic pattern was observed. Only one patient developed aGvHD grade I. To date, three of the patients with AML relapsed; one responded to three escalating transfusions of lymphocytes from the original donor and is in complete remission. Two were retransplanted with non-T cell-depleted peripheral blood stem cells from their original donors and died after retransplantation of septic complications or relapse, respectively. In one patient with CML, loss of bcr-abl gene expression was observed after an expansion of transduced cells. Seven of nine patients are alive and in complete remission.


Subject(s)
Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation/methods , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy , Leukemia, Myeloid, Acute/therapy , Leukocyte Transfusion , Adult , Chimerism , Female , Fusion Proteins, bcr-abl/genetics , Genetic Vectors , Graft vs Host Disease/mortality , Humans , Immunosuppression Therapy , Male , Middle Aged , Proteomics/methods , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Remission Induction , Retroviridae/genetics , Thymidine Kinase/genetics , Tissue Donors , Transduction, Genetic , Transgenes
18.
Hum Gene Ther ; 22(3): 343-56, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21043787

ABSTRACT

From the perspective of a pilot clinical gene therapy trial for Wiskott-Aldrich syndrome (WAS), we implemented a process to produce a lentiviral vector under good manufacturing practices (GMP). The process is based on the transient transfection of 293T cells in Cell Factory stacks, scaled up to harvest 50 liters of viral stock per batch, followed by purification of the vesicular stomatitis virus glycoprotein-pseudotyped particles through several membrane-based and chromatographic steps. The process leads to a 200-fold volume concentration and an approximately 3-log reduction in protein and DNA contaminants. An average yield of 13% of infectious particles was obtained in six full-scale preparations. The final product contained low levels of contaminants such as simian virus 40 large T antigen or E1A sequences originating from producer cells. Titers as high as 2 × 10(9) infectious particles per milliliter were obtained, generating up to 6 × 10(11) infectious particles per batch. The purified WAS vector was biologically active, efficiently expressing the genetic insert in WAS protein-deficient B cell lines and transducing CD34(+) cells. The vector introduced 0.3-1 vector copy per cell on average in CD34(+) cells when used at the concentration of 10(8) infectious particles per milliliter, which is comparable to preclinical preparations. There was no evidence of cellular toxicity. These results show the implementation of large-scale GMP production, purification, and control of advanced HIV-1-derived lentiviral technology. Results obtained with the WAS vector provide the initial manufacturing and quality control benchmarking that should be helpful to further development and clinical applications.


Subject(s)
Genetic Therapy , Genetic Vectors/biosynthesis , Genetic Vectors/genetics , Industrial Microbiology/methods , Lentivirus/genetics , Cell Culture Techniques , Cell Line , Drug Contamination/legislation & jurisprudence , Drug Contamination/prevention & control , Gene Expression Regulation , Gene Order , Genetic Vectors/physiology , HEK293 Cells , Hematopoietic Stem Cells/metabolism , Humans , Lentivirus/physiology , Plasmids/genetics , Proviruses/genetics , Quality Control , Transduction, Genetic , Transgenes/genetics , Wiskott-Aldrich Syndrome/therapy
19.
Proteomics ; 9(14): 3666-76, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19639585

ABSTRACT

Among the integrative gene therapy vectors developed to date, human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) are distinguished by their capacity to infect both dividing and non-dividing cells. Recombinant LV particles contain viral proteins necessary for their packaging, infectious and integrating functions. Like the parental HIV-1 virus they are able to acquire various cellular proteins, but the number and localisation of these proteins are poorly characterised. In the present study we used 2-DE followed by MALDI-TOF to quantify the protein content of several types of vesicular stomatitis virus G-pseudotyped LV including those that were extensively purified in the perspective of clinical gene therapy studies. A proteinase K treatment was used to distinguish between cellular proteins incorporated into virions (I-proteins) and those co-purified with vectors (C-proteins). We found 10 C-proteins and 18 I-proteins associated with LV. Copy numbers for these core I-proteins varied from 5 (AIP-1/ALIX) to 280 (Cyclophilin A) per vector particle. Three novel I-proteins, guanine nucleotide-binding protein 2, L-lactate dehydrogenase B chain and hnRNP core protein A1, were found. This study defines for the first time, the protein stoichiometry of infectious HIV-1-derived LV particles.


Subject(s)
Electrophoresis, Gel, Two-Dimensional/methods , Genetic Vectors/metabolism , Lentivirus/metabolism , Cell Line , Humans , Proteins/metabolism , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Viral Proteins/metabolism
20.
Blood ; 113(5): 1006-15, 2009 Jan 29.
Article in English | MEDLINE | ID: mdl-18978209

ABSTRACT

Long-term clinical remissions of leukemia, after allogeneic hematopoietic stem cell transplantation, depend on alloreactive memory T cells able to self-renew and differentiate into antileukemia effectors. This is counterbalanced by detrimental graft-versus-host disease (GVHD). Induction of a selective suicide in donor T cells is a current gene therapy approach to abrogate GVHD. Unfortunately, genetic modification reduces alloreactivity of lymphocytes. This associates with an effector memory (T(EM)) phenotype of gene-modified lymphocytes and may limit antileukemia effect. We hypothesized that alloreactivity of gene-modified lymphocytes segregates with the central memory (T(CM)) phenotype. To this, we generated suicide gene-modified T(CM) lymphocytes with a retroviral vector after CD28 costimulation and culture with IL-2, IL-7, or a combination of IL-7 and IL-15. In vitro, suicide gene-modified T(CM) cells self-renewed upon alloantigen stimulation and resisted activation-induced cell death. In a humanized mouse model, only suicide gene-modified T cells cultured with IL-7 and IL-15 persisted, differentiated in T(EM) cells, and were as potent as unmanipulated lymphocytes in causing GVHD. GVHD was halted through the activation of the suicide gene machinery. These results warrant the use of suicide gene-modified T(CM) cells cultured with IL-7 and IL-15 for the safe exploitation of the alloreactive response against cancer.


Subject(s)
Genes, Transgenic, Suicide/immunology , Graft vs Host Disease/immunology , Immunologic Memory , Interleukin-15/pharmacology , Interleukin-7/pharmacology , Stem Cell Transplantation , T-Lymphocytes/immunology , Animals , Cell Death/genetics , Cell Death/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Genes, Transgenic, Suicide/genetics , Graft vs Host Disease/genetics , Graft vs Host Disease/therapy , Humans , Immunologic Memory/genetics , Interleukin-15/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Interleukin-7/immunology , Isoantigens/genetics , Isoantigens/immunology , Lymphocyte Activation , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...