Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
N Engl J Med ; 390(21): 1985-1997, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38838312

ABSTRACT

BACKGROUND: Genetic variants that cause rare disorders may remain elusive even after expansive testing, such as exome sequencing. The diagnostic yield of genome sequencing, particularly after a negative evaluation, remains poorly defined. METHODS: We sequenced and analyzed the genomes of families with diverse phenotypes who were suspected to have a rare monogenic disease and for whom genetic testing had not revealed a diagnosis, as well as the genomes of a replication cohort at an independent clinical center. RESULTS: We sequenced the genomes of 822 families (744 in the initial cohort and 78 in the replication cohort) and made a molecular diagnosis in 218 of 744 families (29.3%). Of the 218 families, 61 (28.0%) - 8.2% of families in the initial cohort - had variants that required genome sequencing for identification, including coding variants, intronic variants, small structural variants, copy-neutral inversions, complex rearrangements, and tandem repeat expansions. Most families in which a molecular diagnosis was made after previous nondiagnostic exome sequencing (63.5%) had variants that could be detected by reanalysis of the exome-sequence data (53.4%) or by additional analytic methods, such as copy-number variant calling, to exome-sequence data (10.8%). We obtained similar results in the replication cohort: in 33% of the families in which a molecular diagnosis was made, or 8% of the cohort, genome sequencing was required, which showed the applicability of these findings to both research and clinical environments. CONCLUSIONS: The diagnostic yield of genome sequencing in a large, diverse research cohort and in a small clinical cohort of persons who had previously undergone genetic testing was approximately 8% and included several types of pathogenic variation that had not previously been detected by means of exome sequencing or other techniques. (Funded by the National Human Genome Research Institute and others.).


Subject(s)
Genetic Variation , Rare Diseases , Whole Genome Sequencing , Female , Humans , Male , Cohort Studies , Exome , Exome Sequencing , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/ethnology , Genetic Diseases, Inborn/genetics , Genetic Testing , Genome, Human , Phenotype , Rare Diseases/diagnosis , Rare Diseases/ethnology , Rare Diseases/genetics , Sequence Analysis, DNA , Child , Adolescent , Young Adult , Adult
2.
Bioinformatics ; 39(5)2023 05 04.
Article in English | MEDLINE | ID: mdl-37104749

ABSTRACT

MOTIVATION: Pathogenic copy-number variants (CNVs) can cause a heterogeneous spectrum of rare and severe disorders. However, most CNVs are benign and are part of natural variation in human genomes. CNV pathogenicity classification, genotype-phenotype analyses, and therapeutic target identification are challenging and time-consuming tasks that require the integration and analysis of information from multiple scattered sources by experts. RESULTS: Here, we introduce the CNV-ClinViewer, an open-source web application for clinical evaluation and visual exploration of CNVs. The application enables real-time interactive exploration of large CNV datasets in a user-friendly designed interface and facilitates semi-automated clinical CNV interpretation following the ACMG guidelines by integrating the ClassifCNV tool. In combination with clinical judgment, the application enables clinicians and researchers to formulate novel hypotheses and guide their decision-making process. Subsequently, the CNV-ClinViewer enhances for clinical investigators' patient care and for basic scientists' translational genomic research. AVAILABILITY AND IMPLEMENTATION: The web application is freely available at https://cnv-ClinViewer.broadinstitute.org and the open-source code can be found at https://github.com/LalResearchGroup/CNV-clinviewer.


Subject(s)
DNA Copy Number Variations , Software , Humans , Genomics , Phenotype , Genome, Human
3.
Clin Genet ; 103(2): 226-230, 2023 02.
Article in English | MEDLINE | ID: mdl-36189577

ABSTRACT

NSD2 dimethylates histone H3 at lysine 36 (H3K36me2) and is located in the Wolf-Hirschhorn syndrome (WHS) critical region. Recent descriptions have delineated loss-of-function (LoF) variants in NSD2 with a distinct disorder. The oncogenic missense variant p.Glu1099Lys occurs somatically in leukemia and has a gain-of-function (GoF) effect. We describe two individuals carrying p.Glu1099Lys as heterozygous de novo germline variant identified by exome sequencing (ES) of blood DNA and subsequently confirmed in two ectodermal tissues. Clinically, these individuals are characterized by intellectual disability, coarse/ square facial gestalt, abnormalities of the hands, and organomegaly. Public cell lines with NSD2 GoF variants had increased K36me2, DNA promoter methylation, and dysregulated RNA expression. NSD2 GoF caused by p.Glu1099Lys is associated with a novel phenotype different from WHS and Rauch-Steindl syndrome (RAUST).


Subject(s)
Repressor Proteins , Wolf-Hirschhorn Syndrome , Humans , Repressor Proteins/genetics , Gain of Function Mutation , Histones/genetics , Histones/metabolism , Wolf-Hirschhorn Syndrome/genetics , DNA
4.
Front Genet ; 14: 1297754, 2023.
Article in English | MEDLINE | ID: mdl-38188501

ABSTRACT

Uniparental disomy (UPD) is the inheritance of both alleles of a chromosome from only one parent. So far, the detection of UPDs in sequencing data is not well established and a known gap in next-generation sequencing (NGS) diagnostics. By developing a new tool for UPD detection, we re-evaluated an eight-year-old individual presenting with scoliosis, muscle weakness and global developmental delay. Previous panel analysis identified a homozygous likely pathogenic loss-of-function variant in the PIEZO2-gene associated with arthrogryposis (OMIM # 617146). Interestingly, during a re-evaluation process, we identified a region of homozygosity (ROH) covering over 95% of chromosome 18. Segregation and microsatellite analysis within the family revealed that only the father is a heterozygous carrier of the variant in PIEZO2 and confirmed paternal uniparental isodisomy (iUPD) on chromosome 18 in the individual. Further methylation analysis indicated demethylation of the promotor region of PARD6G-AS1, which is described to be maternally imprinted and could possibly influence the individuals' phenotype. Our report describes the first complete iUPD on chromosome 18 and highlights that UPDs can be a cause for homozygous pathogenic variants, which reduces the risk of reoccurrence in case of a new pregnancy in comparison to an autosomal recessive inheritance trait significantly.

5.
Sci Rep ; 12(1): 13507, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35931711

ABSTRACT

The 15q13.3 microdeletion has pleiotropic effects ranging from apparently healthy to severely affected individuals. The underlying basis of the variable phenotype remains elusive. We analyzed gene expression using blood from three individuals with 15q13.3 microdeletion and brain cortex tissue from ten mice Df[h15q13]/+. We assessed differentially expressed genes (DEGs), protein-protein interaction (PPI) functional modules, and gene expression in brain developmental stages. The deleted genes' haploinsufficiency was not transcriptionally compensated, suggesting a dosage effect may contribute to the pathomechanism. DEGs shared between tested individuals and a corresponding mouse model show a significant overlap including genes involved in monogenic neurodevelopmental disorders. Yet, network-wide dysregulatory effects suggest the phenotype is not caused by a single critical gene. A significant proportion of blood DEGs, silenced in adult brain, have maximum expression during the prenatal brain development. Based on DEGs and their PPI partners we identified altered functional modules related to developmental processes, including nervous system development. We show that the 15q13.3 microdeletion has a ubiquitous impact on the transcriptome pattern, especially dysregulation of genes involved in brain development. The high phenotypic variability seen in 15q13.3 microdeletion could stem from an increased vulnerability during brain development, instead of a specific pathomechanism.


Subject(s)
Chromosome Disorders , Transcriptome , Animals , Brain/metabolism , Chromosome Deletion , Chromosome Disorders/metabolism , Chromosomes, Human, Pair 15/genetics , Humans , Intellectual Disability , Mice , Seizures
6.
Eur J Hum Genet ; 30(1): 117-125, 2022 01.
Article in English | MEDLINE | ID: mdl-34690354

ABSTRACT

This single-center study aims to determine the time, diagnostic procedure, and cost saving potential of early exome sequencing in a cohort of 111 individuals with genetically confirmed neurodevelopmental disorders. We retrospectively collected data regarding diagnostic time points and procedures from the individuals' medical histories and developed criteria for classifying diagnostic procedures in terms of requirement, followed by a cost allocation. All genetic variants were re-evaluated according to ACMG recommendations and considering the individuals' phenotype. Individuals who developed first symptoms of their underlying genetic disorder when Next Generation Sequencing (NGS) diagnostics were already available received a diagnosis significantly faster than individuals with first symptoms before this cutoff. The largest amount of potentially dispensable diagnostics was found in genetic, metabolic, and cranial magnetic resonance imaging examinations. Out of 407 performed genetic examinations, 296 (72.7%) were classified as potentially dispensable. The same applied to 36 (27.9%) of 129 cranial magnetic resonance imaging and 111 (31.8%) of 349 metabolic examinations. Dispensable genetic examinations accounted 302,947.07€ (90.2%) of the total 335,837.49€ in potentially savable costs in this cohort. The remaining 32,890.42€ (9.8%) are related to non-required metabolic and cranial magnetic resonance imaging diagnostics. On average, the total potentially savable costs in our study amount to €3,025.56 per individual. Cost savings by first tier exome sequencing lie primarily in genetic, metabolic, and cMRI testing in this German cohort, underscoring the utility of performing exome sequencing at the beginning of the diagnostic pathway and the potential for saving diagnostic costs and time.


Subject(s)
Developmental Disabilities/genetics , Exome Sequencing/methods , Genetic Testing/methods , Rare Diseases/genetics , Spasms, Infantile/genetics , Adolescent , Child , Child, Preschool , Costs and Cost Analysis , Developmental Disabilities/pathology , Genetic Testing/economics , Humans , Infant , Rare Diseases/diagnosis , Spasms, Infantile/pathology , Exome Sequencing/economics , Young Adult
7.
Eur J Hum Genet ; 30(1): 101-110, 2022 01.
Article in English | MEDLINE | ID: mdl-34697416

ABSTRACT

Biallelic PNKP variants cause heterogeneous disorders ranging from neurodevelopmental disorder with microcephaly/seizures to adult-onset Charcot-Marie-Tooth disease. To date, only postnatal descriptions exist. We present the first prenatal diagnosis of PNKP-related primary microcephaly. Pathological examination of a male fetus in the 18th gestational week revealed micrencephaly with extracerebral malformations and thus presumed syndromic microcephaly. A recessive disorder was suspected because of previous pregnancy termination for similar abnormalities. Prenatal trio-exome sequencing identified compound heterozygosity for the PNKP variants c.498G>A, p.[(=),0?] and c.302C>T, p.(Pro101Leu). Segregation confirmed both variants in the sister fetus. Through RNA analyses, we characterized exon 4 skipping affecting the PNKP forkhead-associated (FHA) and phosphatase domains (p.Leu67_Lys166del) as the predominant effect of the paternal c.498G>A variant. We retrospectively investigated two unrelated individuals diagnosed with biallelic PNKP-variants to compare prenatal/postnatal phenotypes. Both carry the splice donor variant c.1029+2T>C in trans with a variant in the FHA domain (c.311T>C, p.(Leu104Pro); c.151G>C, p.(Val51Leu)). RNA-seq showed complex splicing for c.1029+2T>C and c.151G>C. Structural modeling revealed significant clustering of missense variants in the FHA domain with variants generating structural damage. Our clinical description extends the PNKP-continuum to the prenatal stage. Investigating possible PNKP-variant effects using RNA and structural modeling, we highlight the mutational complexity and exemplify a PNKP-variant characterization framework.


Subject(s)
DNA Repair Enzymes/genetics , Microcephaly/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Adult , DNA Repair Enzymes/chemistry , Female , Fetus/abnormalities , Humans , Male , Microcephaly/diagnosis , Mutation, Missense , Phenotype , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Prenatal Diagnosis , Protein Domains , RNA Splicing
8.
Genes (Basel) ; 14(1)2022 12 22.
Article in English | MEDLINE | ID: mdl-36672771

ABSTRACT

The re-analysis of nondiagnostic exome sequencing (ES) has the potential to increase diagnostic yields in individuals with rare diseases, but its implementation in the daily routines of laboratories is limited due to restricted capacities. Here, we describe a systematic approach to re-analyse the ES data of a cohort consisting of 1040 diagnostic and nondiagnostic samples. We applied a strict filter cascade to reveal the most promising single-nucleotide variants (SNVs) of the whole cohort, which led to an average of 0.77 variants per individual that had to be manually evaluated. This variant set revealed seven novel diagnoses (0.8% of all nondiagnostic cases) and two secondary findings. Thirteen additional variants were identified by a scientific approach prior to this re-analysis and were also present in this variant set. This resulted in a total increase in the diagnostic yield of 2.3%. The filter cascade was optimised during the course of the study and finally resulted in sensitivity of 85%. After applying the filter cascade, our re-analysis took 20 h and enabled a workflow that can be used repeatedly. This work is intended to provide a practical recommendation for other laboratories wishing to introduce a resource-efficient re-analysis strategy into their clinical routine.


Subject(s)
Exome , Neurodevelopmental Disorders , Humans , Exome/genetics , Exome Sequencing , Cohort Studies , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Rare Diseases
9.
Clin Genet ; 100(4): 412-429, 2021 10.
Article in English | MEDLINE | ID: mdl-34216016

ABSTRACT

ZMYND11 is the critical gene in chromosome 10p15.3 microdeletion syndrome, a syndromic cause of intellectual disability. The phenotype of ZMYND11 variants has recently been extended to autism and seizures. We expand on the epilepsy phenotype of 20 individuals with pathogenic variants in ZMYND11. We obtained clinical descriptions of 16 new and nine published individuals, plus detailed case history of two children. New individuals were identified through GeneMatcher, ClinVar and the European Network for Therapies in Rare Epilepsy (NETRE). Genetic evaluation was performed using gene panels or exome sequencing; variants were classified using American College of Medical Genetics (ACMG) criteria. Individuals with ZMYND11 associated epilepsy fell into three groups: (i) atypical benign partial epilepsy or idiopathic focal epilepsy (n = 8); (ii) generalised epilepsies/infantile epileptic encephalopathy (n = 4); (iii) unclassified (n = 8). Seizure prognosis ranged from spontaneous remission to drug resistant. Neurodevelopmental deficits were invariable. Dysmorphic features were variable. Variants were distributed across the gene and mostly de novo with no precise genotype-phenotype correlation. ZMYND11 is one of a small group of chromatin reader genes associated in the pathogenesis of epilepsy, and specifically ABPE. More detailed epilepsy descriptions of larger cohorts and functional studies might reveal genotype-phenotype correlation. The epileptogenic mechanism may be linked to interaction with histone H3.3.


Subject(s)
Cell Cycle Proteins/genetics , Co-Repressor Proteins/genetics , DNA-Binding Proteins/genetics , Epilepsy/diagnosis , Epilepsy/genetics , Genetic Variation , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype , Adolescent , Adult , Alleles , Amino Acid Substitution , Child , Child, Preschool , Databases, Factual , Electroencephalography , Epilepsy/therapy , Epilepsy, Generalized/diagnosis , Epilepsy, Generalized/genetics , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Genotype , Humans , Male , Middle Aged , Mutation , Young Adult
10.
Transcription ; 11(5): 217-229, 2020 10.
Article in English | MEDLINE | ID: mdl-32663063

ABSTRACT

Transcription elongation is a highly regulated process affected by many proteins, RNAs and the underlying DNA. Here we show that the nascent RNA can interfere with transcription in human cells, extending our previous findings from bacteria and yeast. We identified a variety of Pol II-binding aptamers (RAPs), prominent in repeat elements such as ACRO1 satellites, LINE1 retrotransposons and CA simple repeats, and also in several protein-coding genes. ACRO1 repeat, when translated in silico, exhibits ~50% identity with the Pol II CTD sequence. Taken together with a recent proposal that proteins in general tend to interact with RNAs similar to their cognate mRNAs, this suggests a mechanism for RAP binding. Using a reporter construct, we show that ACRO1 potently inhibits Pol II elongation in cis. We propose a novel mode of transcriptional regulation in humans, in which the nascent RNA binds Pol II to silence its own expression.


Subject(s)
Aptamers, Nucleotide/genetics , RNA Polymerase II/genetics , Transcription, Genetic/genetics , Aptamers, Nucleotide/metabolism , Binding Sites/genetics , Humans , RNA Polymerase II/metabolism
11.
Nucleic Acids Res ; 44(4): 1703-17, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26682798

ABSTRACT

The formation of RNA-DNA hybrids, referred to as R-loops, can promote genome instability and cancer development. Yet the mechanisms by which R-loops compromise genome instability are poorly understood. Here, we establish roles for the evolutionarily conserved Nrl1 protein in pre-mRNA splicing regulation, R-loop suppression and in maintaining genome stability. nrl1Δ mutants exhibit endogenous DNA damage, are sensitive to exogenous DNA damage, and have defects in homologous recombination (HR) repair. Concomitantly, nrl1Δ cells display significant changes in gene expression, similar to those induced by DNA damage in wild-type cells. Further, we find that nrl1Δ cells accumulate high levels of R-loops, which co-localize with HR repair factors and require Rad51 and Rad52 for their formation. Together, our findings support a model in which R-loop accumulation and subsequent DNA damage sequesters HR factors, thereby compromising HR repair at endogenously or exogenously induced DNA damage sites, leading to genome instability.


Subject(s)
Alternative Splicing/genetics , Genomic Instability/genetics , Homologous Recombination/genetics , RNA Precursors/genetics , Schizosaccharomyces pombe Proteins/genetics , DNA/chemistry , DNA/genetics , DNA Repair/genetics , RNA/chemistry , RNA/genetics , Rad51 Recombinase/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Schizosaccharomyces/genetics , Spliceosomes/genetics , Spliceosomes/metabolism
12.
RNA Biol ; 10(2): 180-4, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23324605

ABSTRACT

The spliceosomal component U1snRNP commits pre-mRNAs to the splicing pathway. Recently, a nuclear RNA surveillance function has been ascribed to U1, namely the suppression of intronic polyadenylation sites. This surveillance holds regulatory potential as it alters the 3' ends of certain receptor tyrosine kinase mRNAs. However, suppression of 3' end processing by U1 snRNP is also the cause of a severe genetic disorder. We described a 3'UTR point mutation creating a 5'SS leading to U1-mediated suppression of 3' end formation. Thus, the inhibitory function of U1 is both beneficial and deleterious where misled. The exact mechanism of how U1 interferes with 3' end processing remains unclear. According to our data, U1 snRNP already interferes with cleavage or poly(A) site selection instead of directly inhibiting poly(A) polymerase as previously assumed. Here, we present alternative models for U1-mediated poly(A) site suppression and discuss the implications for RNA quality control and disease-related mutations.


Subject(s)
Poly A/metabolism , RNA, Messenger/metabolism , RNA, Viral/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , 3' Untranslated Regions , HIV/genetics , HIV/metabolism , Introns , Point Mutation , Poly A/genetics , Polyadenylation , RNA Cleavage , RNA Splice Sites , RNA Splicing , RNA Stability , RNA, Messenger/genetics , RNA, Viral/genetics , Ribonucleoprotein, U1 Small Nuclear/genetics , Spliceosomes/genetics , Spliceosomes/metabolism
13.
EMBO J ; 31(20): 4035-44, 2012 Oct 17.
Article in English | MEDLINE | ID: mdl-22968171

ABSTRACT

Biallelic mutations in the untranslated regions (UTRs) of mRNAs are rare causes for monogenetic diseases whose mechanisms remain poorly understood. We investigated a 3'UTR mutation resulting in a complex immunodeficiency syndrome caused by decreased mRNA levels of p14/robld3 by a previously unknown mechanism. Here, we show that the mutation creates a functional 5' splice site (SS) and that its recognition by the spliceosomal component U1 snRNP causes p14 mRNA suppression in the absence of splicing. Histone processing signals are able to rescue p14 expression. Therefore, the mutation interferes only with canonical poly(A)-site 3' end processing. Our data suggest that U1 snRNP inhibits cleavage or poly(A) site recognition. This is the first description of a 3'UTR mutation that creates a functional 5'SS causative of a monogenetic disease. Moreover, our data endorse the recently described role of U1 snRNP in suppression of intronic poly(A) sites, which is here deleterious for p14 mRNA biogenesis.


Subject(s)
3' Untranslated Regions/genetics , Adaptor Proteins, Signal Transducing/deficiency , Immunologic Deficiency Syndromes/genetics , Neutropenia/congenital , Polyadenylation/genetics , RNA Splice Sites/genetics , RNA, Small Nuclear/genetics , Adaptor Proteins, Signal Transducing/biosynthesis , Adaptor Proteins, Signal Transducing/genetics , Animals , Base Sequence , Conserved Sequence , Endosomes/ultrastructure , Gene Expression Regulation/drug effects , Genes, Reporter , Histones/physiology , Humans , Introns/genetics , Mammals/genetics , Molecular Sequence Data , Morpholinos/pharmacology , Neutropenia/genetics , Point Mutation , Polyadenylation/drug effects , RNA Splicing/drug effects , RNA Stability , RNA, Messenger/biosynthesis , Sequence Alignment , Sequence Homology, Nucleic Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...