Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
2.
PLoS One ; 19(2): e0295030, 2024.
Article in English | MEDLINE | ID: mdl-38324534

ABSTRACT

Colorectal cancer is the third most common cancer and the second leading cause of cancer-related deaths worldwide. The centrosome is the main microtubule-organizing center in animal cells and centrosome amplification is a hallmark of cancer cells. To investigate the importance of centrosomes in colorectal cancer, we induced centrosome loss in normal and cancer human-derived colorectal organoids using centrinone B, a Polo-like kinase 4 (Plk4) inhibitor. We show that centrosome loss represses human normal colorectal organoid growth in a p53-dependent manner in accordance with previous studies in cell models. However, cancer colorectal organoid lines exhibited different sensitivities to centrosome loss independently of p53. Centrinone-induced cancer organoid growth defect/death positively correlated with a loss of function mutation in the APC gene, suggesting a causal role of the hyperactive WNT pathway. Consistent with this notion, ß-catenin inhibition using XAV939 or ICG-001 partially prevented centrinone-induced death and rescued the growth two APC-mutant organoid lines tested. Our study reveals a novel role for canonical WNT signaling in regulating centrosome loss-induced growth defect/death in a subset of APC-mutant colorectal cancer independently of the classical p53 pathway.


Subject(s)
Adenomatous Polyposis Coli Protein , Colorectal Neoplasms , Tumor Suppressor Protein p53 , beta Catenin , Animals , Humans , beta Catenin/genetics , beta Catenin/metabolism , Centrosome/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Pyrimidines , Sulfones , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Wnt Signaling Pathway , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism
4.
Sci Adv ; 9(35): eade7486, 2023 09.
Article in English | MEDLINE | ID: mdl-37656784

ABSTRACT

In-frame BRAF exon 12 deletions are increasingly identified in various tumor types. The resultant BRAFΔß3-αC oncoproteins usually lack five amino acids in the ß3-αC helix linker and sometimes contain de novo insertions. The dimerization status of BRAFΔß3-αC oncoproteins, their precise pathomechanism, and their direct druggability by RAF inhibitors (RAFi) has been under debate. Here, we functionally characterize BRAFΔLNVTAP>F and two novel mutants, BRAFdelinsFS and BRAFΔLNVT>F, and compare them with other BRAFΔß3-αC oncoproteins. We show that BRAFΔß3-αC oncoproteins not only form stable homodimers and large multiprotein complexes but also require dimerization. Nevertheless, details matter as aromatic amino acids at the deletion junction of some BRAFΔß3-αC oncoproteins, e.g., BRAFΔLNVTAP>F, increase their stability and dimerization propensity while conferring resistance to monomer-favoring RAFi such as dabrafenib or HSP 90/CDC37 inhibition. In contrast, dimer-favoring inhibitors such as naporafenib inhibit all BRAFΔß3-αC mutants in cell lines and patient-derived organoids, suggesting that tumors driven by such oncoproteins are vulnerable to these compounds.


Subject(s)
HSP90 Heat-Shock Proteins , Proto-Oncogene Proteins B-raf , Humans , Dimerization , Proto-Oncogene Proteins B-raf/genetics , Amino Acids
5.
Sci Rep ; 13(1): 3334, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36849518

ABSTRACT

Epithelial ovarian cancer is the most lethal gynecological malignancy, owing notably to its high rate of therapy-resistant recurrence in spite of good initial response to chemotherapy. Although poly(ADP-ribose) polymerase inhibitors (PARPi) have shown promise for ovarian cancer treatment, extended therapy usually leads to acquired PARPi resistance. Here we explored a novel therapeutic option to counter this phenomenon, combining PARPi and inhibitors of nicotinamide phosphoribosyltransferase (NAMPT). Cell-based models of acquired PARPi resistance were created through an in vitro selection procedure. Using resistant cells, xenograft tumors were grown in immunodeficient mice, while organoid models were generated from primary patient tumor samples. Intrinsically PARPi-resistant cell lines were also selected for analysis. Our results show that treatment with NAMPT inhibitors effectively sensitized all in vitro models to PARPi. Adding nicotinamide mononucleotide, the resulting NAMPT metabolite, abrogated the therapy-induced cell growth inhibition, demonstrating the specificity of the synergy. Treatment with olaparib (PARPi) and daporinad (NAMPT inhibitor) depleted intracellular NAD+ , induced double-strand DNA breaks, and promoted apoptosis as monitored by caspase-3 cleavage. The two drugs were also synergistic in mouse xenograft models and clinically relevant patient-derived organoids. Therefore, in the context of PARPi resistance, NAMPT inhibition could offer a promising new option for ovarian cancer patients.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Animals , Mice , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Niacinamide , Ovarian Neoplasms/drug therapy , Dinucleoside Phosphates
6.
Nat Commun ; 12(1): 6274, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725361

ABSTRACT

Cancer cells bearing distinct KRAS mutations exhibit variable sensitivity to SHP2 inhibitors (SHP2i). Here we show that cells harboring KRAS Q61H are uniquely resistant to SHP2i, and investigate the underlying mechanisms using biophysics, molecular dynamics, and cell-based approaches. Q61H mutation impairs intrinsic and GAP-mediated GTP hydrolysis, and impedes activation by SOS1, but does not alter tyrosyl phosphorylation. Wild-type and Q61H-mutant KRAS are both phosphorylated by Src on Tyr32 and Tyr64 and dephosphorylated by SHP2, however, SHP2i does not reduce ERK phosphorylation in KRAS Q61H cells. Phosphorylation of wild-type and Gly12-mutant KRAS, which are associated with sensitivity to SHP2i, confers resistance to regulation by GAP and GEF activities and impairs binding to RAF, whereas the near-complete GAP/GEF-resistance of KRAS Q61H remains unaltered, and high-affinity RAF interaction is retained. SHP2 can stimulate KRAS signaling by modulating GEF/GAP activities and dephosphorylating KRAS, processes that fail to regulate signaling of the Q61H mutant.


Subject(s)
Enzyme Inhibitors/pharmacology , Lung Neoplasms/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Guanosine Triphosphate/metabolism , Humans , Lung Neoplasms/enzymology , Mutation, Missense , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , raf Kinases/genetics , raf Kinases/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism
7.
Cell ; 184(22): 5577-5592.e18, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34644529

ABSTRACT

Intratumoral heterogeneity is a critical frontier in understanding how the tumor microenvironment (TME) propels malignant progression. Here, we deconvolute the human pancreatic TME through large-scale integration of histology-guided regional multiOMICs with clinical data and patient-derived preclinical models. We discover "subTMEs," histologically definable tissue states anchored in fibroblast plasticity, with regional relationships to tumor immunity, subtypes, differentiation, and treatment response. "Reactive" subTMEs rich in complex but functionally coordinated fibroblast communities were immune hot and inhabited by aggressive tumor cell phenotypes. The matrix-rich "deserted" subTMEs harbored fewer activated fibroblasts and tumor-suppressive features yet were markedly chemoprotective and enriched upon chemotherapy. SubTMEs originated in fibroblast differentiation trajectories, and transitory states were notable both in single-cell transcriptomics and in situ. The intratumoral co-occurrence of subTMEs produced patient-specific phenotypic and computationally predictable heterogeneity tightly linked to malignant biology. Therefore, heterogeneity within the plentiful, notorious pancreatic TME is not random but marks fundamental tissue organizational units.


Subject(s)
Pancreatic Neoplasms/pathology , Tumor Microenvironment , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Cell Differentiation , Cell Proliferation , Epithelium/pathology , Extracellular Matrix/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Phenotype , Stromal Cells/pathology , Survival Analysis , Tumor Microenvironment/immunology
8.
J Mol Biol ; 433(23): 167294, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34662547

ABSTRACT

Activating mutations in the epidermal growth factor receptor (EGFR) are common driver mutations in non-small cell lung cancer (NSCLC). First, second and third generation EGFR tyrosine kinase inhibitors (TKIs) are effective at inhibiting mutant EGFR NSCLC, however, acquired resistance is a major issue, leading to disease relapse. Here, we characterize a small molecule, EMI66, an analog of a small molecule which we previously identified to inhibit mutant EGFR signalling via a novel mechanism of action. We show that EMI66 attenuates receptor tyrosine kinase (RTK) expression and signalling and alters the electrophoretic mobility of Coatomer Protein Complex Beta 2 (COPB2) protein in mutant EGFR NSCLC cells. Moreover, we demonstrate that EMI66 can alter the subcellular localization of EGFR and COPB2 within the early secretory pathway. Furthermore, we find that COPB2 knockdown reduces the growth of mutant EGFR lung cancer cells, alters the post-translational processing of RTKs, and alters the endoplasmic reticulum (ER) stress response pathway. Lastly, we show that EMI66 treatment also alters the ER stress response pathway and inhibits the growth of mutant EGFR lung cancer cells and organoids. Our results demonstrate that targeting of COPB2 with EMI66 presents a viable approach to attenuate mutant EGFR signalling and growth in NSCLC.


Subject(s)
Coatomer Protein/genetics , Coatomer Protein/metabolism , Drug Discovery , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation, Neoplastic/drug effects , Receptor Protein-Tyrosine Kinases/genetics , Drug Discovery/methods , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects
9.
Sci Rep ; 11(1): 10619, 2021 05 19.
Article in English | MEDLINE | ID: mdl-34011980

ABSTRACT

Patient-derived xenograft (PDX) and their xenograft-derived organoid (XDO) models that recapitulate the genotypic and phenotypic landscape of patient cancers could help to advance research and lead to improved clinical management. PDX models were established from 276 pancreato-duodenal and biliary cancer resections. Initial, passage 0 (P0) engraftment rates were 59% (118/199) for pancreatic, 86% (25/29) for duodenal, and 35% (17/48) for biliary ductal tumors. Pancreatic ductal adenocarcinoma (PDAC), had a P0 engraftment rate of 62% (105/169). KRAS mutant and wild-type PDAC models were molecularly profiled, and XDO models were generated to perform initial drug response evaluations. Subsets of PDAC PDX models showed global copy number variants and gene expression profiles that were retained with serial passaging, and they showed a spectrum of somatic mutations represented in patient tumors. PDAC XDO models were established, with a success rate of 71% (10/14). Pathway activation of KRAS-MAPK in PDXs was independent of KRAS mutational status. Four wild-type KRAS models were characterized by one with EGFR (L747-P753 del), two with BRAF alterations (N486_P490del or V600E), and one with triple negative KRAS/EGFR/BRAF. Model OCIP256, characterized by BRAF (N486-P490 del), had activated phospho-ERK. A combination treatment of a pan-RAF inhibitor (LY3009120) and a MEK inhibitor (trametinib) effectively suppressed phospho-ERK and inhibited growth of OCIP256 XDO and PDX models. PDAC/duodenal adenocarcinoma have high success rates forming PDX/organoid and retaining their phenotypic and genotypic features. These models may be effective tools to evaluate novel drug combination therapies.


Subject(s)
Biliary Tract Neoplasms/pathology , Duodenal Neoplasms/pathology , Organoids/pathology , Pancreatic Neoplasms/pathology , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biliary Tract Neoplasms/drug therapy , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Duodenal Neoplasms/drug therapy , Humans , Mice, Inbred NOD , Mice, SCID , Mutation/genetics , Organoids/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms
10.
Sci Rep ; 10(1): 14514, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32884042

ABSTRACT

Esophageal adenocarcinoma has few known recurrent mutations and therefore robust, reliable and reproducible patient-specific models are needed for personalized treatment. Patient-derived organoid culture is a strategy that may allow for the personalized study of esophageal adenocarcinoma and the development of personalized induction therapy. We therefore developed a protocol to establish EAC organoids from endoscopic biopsies of naïve esophageal adenocarcinomas. Histologic characterization and molecular characterization of organoids by whole exome sequencing demonstrated recapitulation of the tumors' histology and genomic (~ 60% SNV overlap) characteristics. Drug testing using clinically appropriate chemotherapeutics and targeted therapeutics showed an overlap between the patient's tumor response and the corresponding organoids' response. Furthermore, we identified Barrett's esophagus epithelium as a potential source of organoid culture contamination. In conclusion, organoids can be robustly cultured from endoscopic biopsies of esophageal adenocarcinoma and recapitulate the originating tumor. This model demonstrates promise as a tool to better personalize therapy for esophageal adenocarcinoma patients.


Subject(s)
Adenocarcinoma/drug therapy , Esophageal Neoplasms/drug therapy , Induction Chemotherapy/methods , Precision Medicine/methods , Adult , Aged , Aged, 80 and over , Barrett Esophagus/drug therapy , Female , Humans , Male , Middle Aged , Organoids/cytology
11.
Nat Chem Biol ; 16(5): 577-586, 2020 05.
Article in English | MEDLINE | ID: mdl-32094923

ABSTRACT

Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease. Historically, therapeutics targeting RTKs have been identified using in vitro kinase assays. Due to frequent development of drug resistance, however, there is a need to identify more diverse compounds that inhibit mutated but not wild-type RTKs. Here, we describe MaMTH-DS (mammalian membrane two-hybrid drug screening), a live-cell platform for high-throughput identification of small molecules targeting functional protein-protein interactions of RTKs. We applied MaMTH-DS to an oncogenic epidermal growth factor receptor (EGFR) mutant resistant to the latest generation of clinically approved tyrosine kinase inhibitors (TKIs). We identified four mutant-specific compounds, including two that would not have been detected by conventional in vitro kinase assays. One of these targets mutant EGFR via a new mechanism of action, distinct from classical TKI inhibition. Our results demonstrate how MaMTH-DS is a powerful complement to traditional drug screening approaches.


Subject(s)
High-Throughput Screening Assays/methods , Protein Kinase Inhibitors/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line , Cell Line, Tumor , DNA Nucleotidyltransferases/genetics , Drug Discovery , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Genes, Reporter , Humans , Luciferases/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Phosphorylation/drug effects , Reproducibility of Results , Small Molecule Libraries/pharmacology , Staurosporine/analogs & derivatives , Staurosporine/pharmacology
12.
Adv Funct Mater ; 30(48)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33692660

ABSTRACT

Tumor progression relies heavily on the interaction between the neoplastic epithelial cells and their surrounding stromal partners. This cell cross-talk affects stromal development, and ultimately the heterogeneity impacts drug efflux and efficacy. To mimic this evolving paradigm, we have micro-engineered a three-dimensional (3D) vascularized pancreatic adenocarcinoma tissue in a tri-culture system composed of patient derived pancreatic organoids, primary human fibroblasts and endothelial cells on a perfusable InVADE platform situated in a 96-well plate. Uniquely, through synergistic engineering we combined the benefits of cellular fidelity of patient tumor derived organoids with the addressability of a plastic organ-on-a-chip platform. Validation of this platform included demonstrating the growth of pancreatic tumor organoids by monitoring the change in metabolic activity of the tissue. Investigation of tumor microenvironmental behavior highlighted the role of fibroblasts in symbiosis with patient organoid cells, resulting in a six-fold increase of collagen deposition and a corresponding increase in tissue stiffness in comparison to fibroblast free controls. The value of a perfusable vascular network was evident in drug screening, as perfusion of gemcitabine into a stiffened matrix did not show the dose-dependent effects on tumor viability as those under static conditions. These findings demonstrate the importance of studying the dynamic synergistic relationship between patient cells with stromal fibroblasts, in a 3D perfused vascular network, to accurately understand and recapitulate the tumor microenvironment.

13.
Oncogene ; 39(2): 308-321, 2020 01.
Article in English | MEDLINE | ID: mdl-31477830

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal human cancers, with 5-year patient survival rates of <5%. Activating mutations in KRAS are the predominant oncogenic drivers of PDAC but are accompanied by additional lower frequency genetic alterations. Our group previously identified the guanine nucleotide exchange factor ARHGEF10 in a genomic screen for genes with copy number alterations that may synergize with oncogenic KRAS to promote PDAC carcinogenesis. In the present study we show that ARHGEF10 possesses putative tumor suppressor function in PDAC. ARHGEF10 expression is reduced in over 70% of PDAC cell lines, and copy number loss is documented in more than 30% of PDAC patient-derived xenografts. Loss of ARHGEF10 expression enhanced subcutaneous tumor growth in mouse models, while its exogenous expression greatly impaired tumorigenesis. Loss of ARHGEF10 expression also increased in vitro proliferation, invasion, and motility of PDAC cell lines, and enhanced their metastatic spread in orthotopic mouse models. Treatment of ARHGEF10-depleted cells with the inhibitor dasatinib reduced levels of phospho Src kinase and attenuated motility and invasion in vitro. Together, our data indicate that ARHGEF10 may function as a tumor suppressor in PDAC.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Rho Guanine Nucleotide Exchange Factors/genetics , src-Family Kinases/genetics , Adenocarcinoma/pathology , Animals , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Dasatinib/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Humans , Mice , Mutation , Proto-Oncogene Proteins p21(ras) , Signal Transduction/drug effects , Tumor Suppressor Proteins/genetics
14.
Clin Cancer Res ; 26(5): 1162-1174, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31694835

ABSTRACT

PURPOSE: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related deaths worldwide. There is an unmet need to develop novel clinically relevant models of NSCLC to accelerate identification of drug targets and our understanding of the disease. EXPERIMENTAL DESIGN: Thirty surgically resected NSCLC primary patient tissue and 35 previously established patient-derived xenograft (PDX) models were processed for organoid culture establishment. Organoids were histologically and molecularly characterized by cytology and histology, exome sequencing, and RNA-sequencing analysis. Tumorigenicity was assessed through subcutaneous injection of organoids in NOD/SCID mice. Organoids were subjected to drug testing using EGFR, FGFR, and MEK-targeted therapies. RESULTS: We have identified cell culture conditions favoring the establishment of short-term and long-term expansion of NSCLC organoids derived from primary lung patient and PDX tumor tissue. The NSCLC organoids recapitulated the histology of the patient and PDX tumor. They also retained tumorigenicity, as evidenced by cytologic features of malignancy, xenograft formation, preservation of mutations, copy number aberrations, and gene expression profiles between the organoid and matched parental tumor tissue by whole-exome and RNA sequencing. NSCLC organoid models also preserved the sensitivity of the matched parental tumor to targeted therapeutics, and could be used to validate or discover biomarker-drug combinations. CONCLUSIONS: Our panel of NSCLC organoids closely recapitulates the genomics and biology of patient tumors, and is a potential platform for drug testing and biomarker validation.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Disease Models, Animal , Lung Neoplasms/pathology , Molecular Targeted Therapy/methods , Mutation , Organoids/pathology , Animals , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Organ Culture Techniques/methods , Organoids/drug effects , Organoids/metabolism , Xenograft Model Antitumor Assays
15.
Nat Commun ; 10(1): 224, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30644389

ABSTRACT

Deregulation of the RAS GTPase cycle due to mutations in the three RAS genes is commonly associated with cancer development. Protein tyrosine phosphatase SHP2 promotes RAF-to-MAPK signaling pathway and is an essential factor in RAS-driven oncogenesis. Despite the emergence of SHP2 inhibitors for the treatment of cancers harbouring mutant KRAS, the mechanism underlying SHP2 activation of KRAS signaling remains unclear. Here we report tyrosyl-phosphorylation of endogenous RAS and demonstrate that KRAS phosphorylation via Src on Tyr32 and Tyr64 alters the conformation of switch I and II regions, which stalls multiple steps of the GTPase cycle and impairs binding to effectors. In contrast, SHP2 dephosphorylates KRAS, a process that is required to maintain dynamic canonical KRAS GTPase cycle. Notably, Src- and SHP2-mediated regulation of KRAS activity extends to oncogenic KRAS and the inhibition of SHP2 disrupts the phosphorylation cycle, shifting the equilibrium of the GTPase cycle towards the stalled 'dark state'.


Subject(s)
Antineoplastic Agents/therapeutic use , GTP Phosphohydrolases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , HEK293 Cells , Humans , Male , Mice, SCID , Pancreatic Neoplasms/drug therapy , Xenograft Model Antitumor Assays , raf Kinases/metabolism
16.
PLoS Comput Biol ; 15(1): e1006596, 2019 01.
Article in English | MEDLINE | ID: mdl-30629588

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among solid malignancies and improved therapeutic strategies are needed to improve outcomes. Patient-derived xenografts (PDX) and patient-derived organoids (PDO) serve as promising tools to identify new drugs with therapeutic potential in PDAC. For these preclinical disease models to be effective, they should both recapitulate the molecular heterogeneity of PDAC and validate patient-specific therapeutic sensitivities. To date however, deep characterization of the molecular heterogeneity of PDAC PDX and PDO models and comparison with matched human tumour remains largely unaddressed at the whole genome level. We conducted a comprehensive assessment of the genetic landscape of 16 whole-genome pairs of tumours and matched PDX, from primary PDAC and liver metastasis, including a unique cohort of 5 'trios' of matched primary tumour, PDX, and PDO. We developed a pipeline to score concordance between PDAC models and their paired human tumours for genomic events, including mutations, structural variations, and copy number variations. Tumour-model comparisons of mutations displayed single-gene concordance across major PDAC driver genes, but relatively poor agreement across the greater mutational load. Genome-wide and chromosome-centric analysis of structural variation (SV) events highlights previously unrecognized concordance across chromosomes that demonstrate clustered SV events. We found that polyploidy presented a major challenge when assessing copy number changes; however, ploidy-corrected copy number states suggest good agreement between donor-model pairs. Collectively, our investigations highlight that while PDXs and PDOs may serve as tractable and transplantable systems for probing the molecular properties of PDAC, these models may best serve selective analyses across different levels of genomic complexity.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Genome/genetics , Models, Biological , Neoplasms, Experimental/genetics , Pancreatic Neoplasms/genetics , Animals , Biomedical Research/standards , Humans , Pancreas/pathology
17.
J Am Chem Soc ; 140(13): 4473-4476, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29543440

ABSTRACT

Small GTPases (sGTPases) are critical switch-like regulators that mediate several important cellular functions and are often mutated in human cancers. They are activated by guanine nucleotide exchange factors (GEFs), which specifically catalyze the exchange of GTP for GDP. GEFs coordinate signaling networks in normal cells, and are frequently deregulated in cancers. sGTPase signaling pathways are complex and interconnected; however, most GEF assays do not reveal such complexity. In this Communication, we describe the development of a unique real-time NMR-based multiplexed GEF assay that employs distinct isotopic labeling schemes for each sGTPase protein to enable simultaneous observation of six proteins of interest. We monitor nucleotide exchange of KRas, Rheb, RalB, RhoA, Cdc42 and Rac1 in a single system, and assayed the activities of GEFs in lysates of cultured human cells and 3D organoids derived from pancreatic cancer patients. We observed potent activation of RhoA by lysates of HEK293a cells transfected with GEF-H1, along with weak stimulation of Rac1, which we showed is indirect. Our functional analyses of pancreatic cancer-derived organoids revealed higher GEF activity for RhoA than other sGTPases, in line with RNA-seq data indicating high expression of RhoA-specific GEFs.


Subject(s)
GTP Phosphohydrolases/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Biological Assay , Guanine Nucleotide Exchange Factors/classification , HEK293 Cells , Humans , Magnetic Resonance Spectroscopy , Pancreatic Neoplasms/pathology , rhoA GTP-Binding Protein/chemistry
18.
Cancer Cell ; 25(2): 181-95, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24525234

ABSTRACT

Cellular transformation by oncogenic RAS engages the MAPK pathway under strict regulation by the scaffold protein KSR-1. Here, we report that the guanine nucleotide exchange factor GEF-H1 plays a critical role in a positive feedback loop for the RAS/MAPK pathway independent of its RhoGEF activity. GEF-H1 acts as an adaptor protein linking the PP2A B' subunits to KSR-1, thereby mediating the dephosphorylation of KSR-1 S392 and activation of MAPK signaling. GEF-H1 is important for the growth and survival of HRAS(V12)-transformed cells and pancreatic tumor xenografts. GEF-H1 expression is induced by oncogenic RAS and is correlated with pancreatic neoplastic progression. Our results, therefore, identify GEF-H1 as an amplifier of MAPK signaling and provide mechanistic insight into the progression of RAS mutant tumors.


Subject(s)
Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/pathology , Protein Kinases/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , ras Proteins/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Immunoenzyme Techniques , Mice , NIH 3T3 Cells , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Phosphorylation , Promoter Regions, Genetic/genetics , Protein Kinases/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , Signal Transduction , Tumor Cells, Cultured , ras Proteins/genetics
19.
PLoS One ; 9(1): e86103, 2014.
Article in English | MEDLINE | ID: mdl-24465899

ABSTRACT

KRAS is mutated in ∼40% of colorectal cancer (CRC), and there are limited effective treatments for advanced KRAS mutant CRC. Therefore, it is crucial that downstream mediators of oncogenic KRAS continue to be studied. We identified p190RhoGAP as being phosphorylated in the DLD1 CRC cell line, which expresses a heterozygous KRAS G13D allele, and not in DKO4 in which the mutant allele has been deleted by somatic recombination. We found that a ubiquitous binding partner of p190RhoGAP, p120RasGAP (RasGAP), is expressed in much lower levels in DKO4 cells compared to DLD1, and this expression is regulated by KRAS. Rescue of RasGAP expression in DKO4 rescued Rho pathway activation and partially rescued tumorigenicity in DKO4 cells, indicating that the combination of mutant KRAS and RasGAP expression is crucial to these phenotypes. We conclude that RasGAP is an important effector of mutant KRAS in CRC.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Colorectal Neoplasms/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Repressor Proteins/metabolism , Signal Transduction , p120 GTPase Activating Protein/metabolism , Base Sequence , Cell Adhesion , Cell Line, Tumor , Cell Movement , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Models, Biological , Molecular Sequence Data , Mutant Proteins/metabolism , Mutation/genetics , Phenotype , Phosphorylation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras) , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stress Fibers/metabolism , p120 GTPase Activating Protein/genetics , ras Proteins/genetics
20.
Oncoscience ; 1(5): 326-35, 2014.
Article in English | MEDLINE | ID: mdl-25594027

ABSTRACT

SOX genes are transcription factors with important roles in embryonic development and carcinogenesis. The SOX family of 20 genes is responsible for regulating lineage and tissue specific gene expression patterns, controlling numerous developmental processes including cell differentiation, sex determination, and organogenesis. As is the case with many genes involved in regulating development, SOX genes are frequently deregulated in cancer. In this perspective we provide a brief overview of how SOX proteins can promote or suppress cancer growth. We also present a pan-cancer analysis of aberrant SOX gene expression and highlight potential molecular mechanisms responsible for their disruption in cancer. Our analyses indicate the prominence of SOX deregulation in different cancer types and reveal potential roles for SOX genes not previously described in cancer. Finally, we summarize our recent identification of SOX15 as a candidate tumor suppressor in pancreatic cancer and propose several research avenues to pursue to further delineate the emerging role of SOX15 in development and carcinogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...