Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Biomaterials ; 308: 122531, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38531198

ABSTRACT

Radiation therapy (RT) is essential for triple negative breast cancer (TNBC) treatment. However, patients with TNBC continue to experience recurrence after RT. The role of the extracellular matrix (ECM) of irradiated breast tissue in tumor recurrence is still unknown. In this study, we evaluated the structure, molecular composition, and mechanical properties of irradiated murine mammary fat pads (MFPs) and developed ECM hydrogels from decellularized tissues (dECM) to assess the effects of RT-induced ECM changes on breast cancer cell behavior. Irradiated MFPs were characterized by increased ECM deposition and fiber density compared to unirradiated controls, which may provide a platform for cell invasion and proliferation. ECM component changes in collagens I, IV, and VI, and fibronectin were observed following irradiation in both MFPs and dECM hydrogels. Encapsulated TNBC cell proliferation and invasive capacity was enhanced in irradiated dECM hydrogels. In addition, TNBC cells co-cultured with macrophages in irradiated dECM hydrogels induced M2 macrophage polarization and exhibited further increases in proliferation. Our study establishes that the ECM in radiation-damaged sites promotes TNBC invasion and proliferation as well as an immunosuppressive microenvironment. This work represents an important step toward elucidating how changes in the ECM after RT contribute to breast cancer recurrence.


Subject(s)
Cell Proliferation , Extracellular Matrix , Hydrogels , Triple Negative Breast Neoplasms , Tumor Microenvironment , Animals , Extracellular Matrix/metabolism , Tumor Microenvironment/radiation effects , Hydrogels/chemistry , Female , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Line, Tumor , Mice , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/radiotherapy , Macrophages/metabolism , Mammary Glands, Animal/radiation effects
2.
Cell Mol Bioeng ; 16(4): 393-403, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37810999

ABSTRACT

Introduction: While most patients with triple negative breast cancer receive radiation therapy to improve outcomes, a significant subset of patients continue to experience recurrence. Macrophage infiltration into radiation-damaged sites has been shown to promote breast cancer recurrence in pre-clinical models. However, the mechanisms that drive recurrence are unknown. Here, we developed a novel spheroid model to evaluate macrophage-mediated tumor cell recruitment. Methods: We characterized infiltrating macrophage phenotypes into irradiated mouse mammary tissue via flow cytometry. We then engineered a spheroid model of radiation damage with primary fibroblasts, macrophages, and 4T1 mouse mammary carcinoma cells using in vivo macrophage infiltration results to inform our model. We analyzed 4T1 infiltration into spheroids when co-cultured with biologically relevant ratios of pro-healing M2:pro-inflammatory M1 macrophages. Finally, we quantified interleukin 6 (IL-6) secretion associated with conditions favorable to tumor cell infiltration, and we directly evaluated the impact of IL-6 on tumor cell invasiveness in vitro and in vivo. Results: In our in vivo model, we observed a significant increase in M2 macrophages in mouse mammary glands 10 days post-irradiation. We determined that tumor cell motility toward irradiated spheroids was enhanced in the presence of a 2:1 ratio of M2:M1 macrophages. We also measured a significant increase in IL-6 secretion after irradiation both in vivo and in our model. This secretion increased tumor cell invasiveness, and tumor cell invasion and recruitment were mitigated by neutralizing IL-6. Conclusions: Our work suggests that interactions between infiltrating macrophages and damaged stromal cells facilitate breast cancer recurrence through IL-6 signaling. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00775-x.

3.
bioRxiv ; 2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37577718

ABSTRACT

While immunotherapy shows great promise in patients with triple negative breast cancer, many will not respond to treatment, and predicting response is made difficult by significant tumor heterogeneity. Non-invasive imaging of the tumor vasculature enables the monitoring of treatment and has potential to aid in predicting therapeutic response. Here, we use ultrafast power doppler ultrasound (US) to track longitudinal changes in the vascular response to radiotherapy in two breast cancer models to correlate vascular and immune changes in the tumor microenvironment. Tumor volume and vascular index were calculated to evaluate the effects of radiation using US imaging. US tumor measurements and the quantified vascular response to radiation were confirmed with caliper measurements and immunohistochemistry observations, respectively, demonstrating a proof-of-principle method for non-invasive vascular monitoring. Additionally, we found significant infiltration of CD8+ T cells into irradiated tumors 10 days after radiation, which followed a sustained decline in vascular index that was first observed 1 day post-radiation. Taken together, our findings reveal the potential for ultrafast power doppler US to evaluate changes in tumor vasculature that may be indicative of the tumor-immune microenvironment and ultimately improve patient outcomes by predicting response to immunotherapy.

4.
Front Bioeng Biotechnol ; 11: 1181842, 2023.
Article in English | MEDLINE | ID: mdl-37214285

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Therefore, development of novel technologies and strategies to treat PD is a global health priority. Current treatments include administration of Levodopa, monoamine oxidase inhibitors, catechol-O-methyltransferase inhibitors, and anticholinergic drugs. However, the effective release of these molecules, due to the limited bioavailability, is a major challenge for the treatment of PD. As a strategy to solve this challenge, in this study we developed a novel multifunctional magnetic and redox-stimuli responsive drug delivery system, based on the magnetite nanoparticles functionalized with the high-performance translocating protein OmpA and encapsulated into soy lecithin liposomes. The obtained multifunctional magnetoliposomes (MLPs) were tested in neuroblastoma, glioblastoma, primary human and rat astrocytes, blood brain barrier rat endothelial cells, primary mouse microvascular endothelial cells, and in a PD-induced cellular model. MLPs demonstrated excellent performance in biocompatibility assays, including hemocompatibility (hemolysis percentages below 1%), platelet aggregation, cytocompatibility (cell viability above 80% in all tested cell lines), mitochondrial membrane potential (non-observed alterations) and intracellular ROS production (negligible impact compared to controls). Additionally, the nanovehicles showed acceptable cell internalization (covered area close to 100% at 30 min and 4 h) and endosomal escape abilities (significant decrease in lysosomal colocalization after 4 h of exposure). Moreover, molecular dynamics simulations were employed to better understand the underlying translocating mechanism of the OmpA protein, showing key findings regarding specific interactions with phospholipids. Overall, the versatility and the notable in vitro performance of this novel nanovehicle make it a suitable and promising drug delivery technology for the potential treatment of PD.

5.
Small ; 19(29): e2204293, 2023 07.
Article in English | MEDLINE | ID: mdl-36965074

ABSTRACT

The in vivo dynamics of nanoparticles requires a mechanistic understanding of multiple factors. Here, for the first time, the surprising breakdown of functionalized gold nanostars (F-AuNSs) conjugated with antibodies and 64 Cu radiolabels in vivo and in artificial lysosomal fluid ex vivo, is shown. The short-term biodistribution of F-AuNSs is driven by the route of systemic delivery (intravenous vs intraperitoneal) and long-term fate is controlled by the tissue type in vivo. In vitro studies including endocytosis pathways, intracellular trafficking, and opsonization, are combined with in vivo studies integrating a milieu of spectroscopy and microcopy techniques that show F-AuNSs dynamics is driven by their physicochemical properties and route of delivery. F-AuNSs break down into sub-20 nm broken nanoparticles as early as 7 days postinjection. Martini coarse-grained simulations are performed to support the in vivo findings. Simulations suggest that shape, size, and charge of the broken nanoparticles, and composition of the lipid membrane depicting various tissues govern the interaction of the nanoparticles with the membrane, and the rate of translocation across the membrane to ultimately enable tissue clearance. The fundamental study addresses critical gaps in the knowledge regarding the fate of nanoparticles in vivo that remain a bottleneck in their clinical translation.


Subject(s)
Metal Nanoparticles , Nanoparticles , Gold/chemistry , Tissue Distribution , Nanoparticles/chemistry , Metal Nanoparticles/chemistry
6.
Med Phys ; 50(2): 1251-1256, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36564922

ABSTRACT

BACKGROUND: While radiation therapy (RT) is a critical component of breast cancer therapy and is known to decrease overall local recurrence rates, recent studies have shown that normal tissue radiation damage may increase recurrence risk. Fibrosis is a well-known consequence of RT, but the specific sequence of molecular and mechanical changes induced by RT remains poorly understood. PURPOSE: To improve cancer therapy outcomes, there is a need to understand the role of the irradiated tissue microenvironment in tumor recurrence. This study seeks to evaluate the use of spectral quantitative ultrasound (spectral QUS) for real time determination of the normal tissue characteristic radiation response and to correlate these results to molecular features in irradiated tissues. METHODS: Murine mammary fat pads (MFPs) were irradiated to 20 Gy, and spectral QUS was used to analyze tissue physical properties pre-irradiation as well as at 1, 5, and 10 days post-irradiation. Tissues were processed for scanning electron microscopy imaging as well as histological and immunohistochemical staining to evaluate morphology and structure. RESULTS: Tissue morphological and structural changes were observed non-invasively following radiation using mid-band fit (MBF), spectral slope (SS), and spectral intercept (SI) measurements obtained from spectral QUS. Statistically significant shifts in MBF and SI indicate structural tissue changes in real time, which matched histological observations. Radiation damage was indicated by increased adipose tissue density and extracellular matrix (ECM) deposition. CONCLUSIONS: Our findings demonstrate the potential of using spectral QUS to noninvasively evaluate normal tissue changes resulting from radiation damage. This supports further pre-clinical studies to determine how the tissue microenvironment and physical properties change in response to therapy, which may be important for improving treatment strategies.


Subject(s)
Breast Neoplasms , Neoplasm Recurrence, Local , Humans , Animals , Mice , Female , Ultrasonography/methods , Breast Neoplasms/radiotherapy , Fibrosis , Spectrum Analysis/methods , Tumor Microenvironment
7.
Article in English | MEDLINE | ID: mdl-38169992

ABSTRACT

Bone metastasis is highly prevalent in breast cancer patients with metastatic disease. These metastatic cells may eventually form osteolytic lesions and affect the integrity of the bone, causing pathological fractures and impairing patient quality of life. Although some mechanisms have been determined in the metastatic cascade to the bone, little is known about how the mechanical cues of the bone marrow microenvironment influence tumor cell growth and invasion once they have homed to the secondary site. The mechanical properties within the bone marrow range from 0.5 kPa in the sinusoidal region to 40 kPa in the endosteal region. Here, we report an alginate-Matrigel hydrogel that can be modulated to the stiffness range of the bone marrow and used to evaluate tumor cell behavior. We fabricated alginate-Matrigel hydrogels with varying calcium sulfate (CaSO4) concentrations to tune stiffness, and we demonstrated that these hydrogels recapitulated the mechanical properties observed in the bone marrow microenvironment (0.7-16 kPa). We encapsulated multiple breast cancer cell lines into these hydrogels to assess growth and invasion. Tumor cells in stiffer hydrogels exhibited increased proliferation and enhanced elongation compared to lower stiffness hydrogels, which suggests that stiffer environments in the bone marrow promote cellular invasive capacity. This work establishes a system that replicates bone marrow mechanical properties to elucidate the physical factors that contribute to metastatic growth.

8.
Cell Commun Signal ; 19(1): 104, 2021 10 16.
Article in English | MEDLINE | ID: mdl-34656117

ABSTRACT

Intercellular communication is a critical process that ensures cooperation between distinct cell types and maintains homeostasis. EVs, which were initially described as cellular debris and devoid of biological function, are now recognized as key components in cell-cell communication. EVs are known to carry multiple factors derived from their cell of origin, including cytokines and chemokines, active enzymes, metabolites, nucleic acids, and surface molecules, that can alter the behavior of recipient cells. Since the cargo of EVs reflects their parental cells, EVs from damaged and dysfunctional tissue environments offer an abundance of information toward elucidating the molecular mechanisms of various diseases and pathological conditions. In this review, we discuss the most recent findings regarding the role of EVs in the progression of cancer, metabolic disorders, and inflammatory lung diseases given the high prevalence of these conditions worldwide and the important role that intercellular communication between immune, parenchymal, and stromal cells plays in the development of these pathological states. We also consider the clinical applications of EVs, including the possibilities for their use as novel therapeutics. While intercellular communication through extracellular vesicles (EVs) is key for physiological processes and tissue homeostasis, injury and stress result in altered communication patterns in the tissue microenvironment. When left unchecked, EV-mediated interactions between stromal, immune, and parenchymal cells lead to the development of disease states Video Abstract.


Subject(s)
Cell Communication/genetics , Extracellular Vesicles/genetics , Neoplasms/genetics , Tumor Microenvironment/genetics , Extracellular Vesicles/pathology , Homeostasis/genetics , Humans , Neoplasms/pathology
9.
Commun Biol ; 4(1): 1122, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556788

ABSTRACT

Hypoxia is a common feature in tumors and induces signaling that promotes tumor cell survival, invasion, and metastasis, but the impact of hypoxia inducible factor (HIF) signaling in the primary tumor on dissemination to bone in particular remains unclear. To better understand the contributions of hypoxia inducible factor 1 alpha (HIF1α), HIF2α, and general HIF pathway activation in metastasis, we employ a PyMT-driven spontaneous murine mammary carcinoma model with mammary specific deletion of Hif1α, Hif2α, or von Hippel-Lindau factor (Vhl) using the Cre-lox system. Here we show that Hif1α or Hif2α deletion in the primary tumor decreases metastatic tumor burden in the bone marrow, while Vhl deletion increases bone tumor burden, as hypothesized. Unexpectedly, Hif1α deletion increases metastatic tumor burden in the lung, while deletion of Hif2α or Vhl does not affect pulmonary metastasis. Mice with Hif1α deleted tumors also exhibit reduced bone volume as measured by micro computed tomography, suggesting that disruption of the osteogenic niche may be involved in the preference for lung dissemination observed in this group. Thus, we reveal that HIF signaling in breast tumors controls tumor dissemination in a site-specific manner.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Deletion , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Signal Transduction , Tumor Burden , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Breast Neoplasms , Cell Line, Tumor , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Mice, Knockout , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
10.
Nat Commun ; 12(1): 4308, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262028

ABSTRACT

Hypoxia plays a critical role in tumor progression including invasion and metastasis. To determine critical genes regulated by hypoxia that promote invasion and metastasis, we screen fifty hypoxia inducible genes for their effects on invasion. In this study, we identify v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (MAFF) as a potent regulator of tumor invasion without affecting cell viability. MAFF expression is elevated in metastatic breast cancer patients and is specifically correlated with hypoxic tumors. Combined ChIP- and RNA-sequencing identifies IL11 as a direct transcriptional target of the heterodimer between MAFF and BACH1, which leads to activation of STAT3 signaling. Inhibition of IL11 results in similar levels of metastatic suppression as inhibition of MAFF. This study demonstrates the oncogenic role of MAFF as an activator of the IL11/STAT3 pathways in breast cancer.


Subject(s)
Breast Neoplasms/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Interleukin-11/metabolism , MafF Transcription Factor/metabolism , Nuclear Proteins/metabolism , STAT3 Transcription Factor/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Cell Hypoxia , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , MafF Transcription Factor/genetics , Mice , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/pathology , Nuclear Proteins/genetics , Prognosis , Signal Transduction , Transcription, Genetic
11.
Cell Chem Biol ; 28(8): 1206-1220.e6, 2021 08 19.
Article in English | MEDLINE | ID: mdl-33713600

ABSTRACT

Y box binding protein 1 (YB-1) is a multifunctional protein associated with tumor progression and the emergence of treatment resistance (TR). Here, we report an azopodophyllotoxin small molecule, SU056, that potently inhibits tumor growth and progression via YB-1 inhibition. This YB-1 inhibitor inhibits cell proliferation, resistance to apoptosis in ovarian cancer (OC) cells, and arrests in the G1 phase. Inhibitor treatment leads to enrichment of proteins associated with apoptosis and RNA degradation pathways while downregulating spliceosome pathway. In vivo, SU056 independently restrains OC progression and exerts a synergistic effect with paclitaxel to further reduce disease progression with no observable liver toxicity. Moreover, in vitro mechanistic studies showed delayed disease progression via inhibition of drug efflux and multidrug resistance 1, and significantly lower neurotoxicity as compared with etoposide. These data suggest that YB-1 inhibition may be an effective strategy to reduce OC progression, antagonize TR, and decrease patient mortality.


Subject(s)
Antineoplastic Agents/pharmacology , Ovarian Neoplasms/drug therapy , Y-Box-Binding Protein 1/antagonists & inhibitors , Aged , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Middle Aged , Molecular Structure , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Rats , Y-Box-Binding Protein 1/analysis , Y-Box-Binding Protein 1/metabolism
12.
Int J Radiat Oncol Biol Phys ; 109(5): 1440-1453, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33186615

ABSTRACT

PURPOSE: To investigate whether the vascular collapse in tumors by conventional dose rate (CONV) irradiation (IR) would also occur by the ultra-high dose rate FLASH IR. METHODS AND MATERIALS: Lewis lung carcinoma (LLC) cells were subcutaneously implanted in mice. This was followed by CONV or FLASH IR at 15 Gy. Tumors were harvested at 6 or 48 hours after IR and stained for CD31, phosphorylated myosin light chain (p-MLC), γH2AX (a surrogate marker for DNA double strand break), intracellular reactive oxygen species (ROS), or immune cells such as myeloid and CD8α T cells. Cell lines were irradiated with CONV IR for Western blot analyses. ML-7 was intraperitoneally administered daily to LLC-bearing mice for 7 days before 15 Gy CONV IR. Tumors were similarly harvested and analyzed. RESULTS: By immunostaining, we observed that CONV IR at 6 hours resulted in constricted vessel morphology, increased expression of p-MLC, and much higher numbers of γH2AX-positive cells in tumors, which were not observed with FLASH IR. Mechanistically, MLC activation by ROS is unlikely, because FLASH IR produced significantly more ROS than CONV IR in tumors. In vitro studies demonstrated that ML-7, an inhibitor of MLC kinase, abrogated IR-induced γH2AX formation and disappearance kinetics. Lastly, we observed that CONV IR when combined with ML-7 produced some effects similar to FLASH IR, including reduction in the vasculature collapse, fewer γH2AX-positive cells, and increased immune cell influx to the tumors. CONCLUSIONS: FLASH IR produced novel changes in the tumor microenvironment that were not observed with CONV IR. We believe that MLC activation in tumors may be responsible for some of the microenvironmental changes differentially regulated between CONV and FLASH IR.


Subject(s)
Carcinoma, Lewis Lung/radiotherapy , Myosin Light Chains/radiation effects , Tumor Microenvironment/radiation effects , Animals , Azepines/administration & dosage , Blood Vessels/pathology , Blood Vessels/radiation effects , CD8-Positive T-Lymphocytes/cytology , Carcinoma, Lewis Lung/blood supply , Carcinoma, Lewis Lung/metabolism , Histones/metabolism , Histones/radiation effects , Male , Mice , Mice, Inbred C57BL , Myosin Light Chains/antagonists & inhibitors , Myosin Light Chains/metabolism , Naphthalenes/administration & dosage , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/radiation effects , Radiotherapy/methods , Radiotherapy Dosage , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/radiation effects
13.
Sci Rep ; 10(1): 21600, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303827

ABSTRACT

Radiation therapy is the most effective cytotoxic therapy for localized tumors. However, normal tissue toxicity limits the radiation dose and the curative potential of radiation therapy when treating larger target volumes. In particular, the highly radiosensitive intestine limits the use of radiation for patients with intra-abdominal tumors. In metastatic ovarian cancer, total abdominal irradiation (TAI) was used as an effective postsurgical adjuvant therapy in the management of abdominal metastases. However, TAI fell out of favor due to high toxicity of the intestine. Here we utilized an innovative preclinical irradiation platform to compare the safety and efficacy of TAI ultra-high dose rate FLASH irradiation to conventional dose rate (CONV) irradiation in mice. We demonstrate that single high dose TAI-FLASH produced less mortality from gastrointestinal syndrome, spared gut function and epithelial integrity, and spared cell death in crypt base columnar cells compared to TAI-CONV irradiation. Importantly, TAI-FLASH and TAI-CONV irradiation had similar efficacy in reducing tumor burden while improving intestinal function in a preclinical model of ovarian cancer metastasis. These findings suggest that FLASH irradiation may be an effective strategy to enhance the therapeutic index of abdominal radiotherapy, with potential application to metastatic ovarian cancer.


Subject(s)
Gastrointestinal Tract/radiation effects , Ovarian Neoplasms/radiotherapy , Radiation Injuries, Experimental/prevention & control , Radiotherapy/methods , Animals , Female , Gastrointestinal Tract/injuries , Gastrointestinal Tract/pathology , Mice , Mice, Inbred C57BL , Radiotherapy/adverse effects
15.
Cell Mol Bioeng ; 13(4): 341-357, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32952734

ABSTRACT

Patients with triple negative breast cancer (TNBC) typically receive chemotherapy, surgery, and radiation therapy. Although this treatment improves prognosis for most patients, some patients continue to experience recurrence within 5 years. Preclinical studies have shown that immune cell infiltration at the irradiated site may play a significant role in tumor cell recruitment; however, little is known about the mechanisms that govern this process. This lack of knowledge highlights the need to evaluate radiation-induced cell infiltration with models that have controllable variables and maintain biological integrity. Mammary organoids are multicellular three-dimensional (3D) in vitro models, and they have been used to examine many aspects of mammary development and tumorigenesis. Organoids are also emerging as a powerful tool to investigate normal tissue radiation damage. In this review, we evaluate recent advances in mammary organoid technology, consider the advantages of using organoids to study radiation response, and discuss future directions for the applications of this technique.

16.
Prog Lipid Res ; 80: 101055, 2020 11.
Article in English | MEDLINE | ID: mdl-32791170

ABSTRACT

Over the past decade, the study of metabolic abnormalities in cancer cells has risen dramatically. Cancer cells can thrive in challenging environments, be it the hypoxic and nutrient-deplete tumor microenvironment or a distant tissue following metastasis. The ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment and adjacent stroma. Adipocytes can be activated by cancer cells to lipolyze their triglyceride stores, delivering secreted fatty acids to cancer cells for uptake through numerous fatty acid transporters. Cancer-associated fibroblasts are also implicated in lipid secretion for cancer cell catabolism and lipid signaling leading to activation of mitogenic and migratory pathways. As these cancer-stromal interactions are exacerbated during tumor progression, fatty acids secreted into the microenvironment can impact infiltrating immune cell function and phenotype. Lipid metabolic abnormalities such as increased fatty acid oxidation and de novo lipid synthesis can provide survival advantages for the tumor to resist chemotherapeutic and radiation treatments and alleviate cellular stresses involved in the metastatic cascade. In this review, we highlight recent literature that demonstrates how lipids can shape each part of the cancer lifecycle and show that there is significant potential for therapeutic intervention surrounding lipid metabolic and signaling pathways.


Subject(s)
Fatty Acids/metabolism , Lipid Metabolism/physiology , Neoplasms/pathology , Tumor Microenvironment/physiology , Humans , Lipid Metabolism/immunology , Macrophages/metabolism , Macrophages/pathology , Neoplasms/metabolism , Neoplasms/therapy , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Tumor Microenvironment/immunology
17.
J Immunother Cancer ; 8(1)2020 03.
Article in English | MEDLINE | ID: mdl-32169869

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is a childhood cancer for which new treatment options are needed. The success of immune checkpoint blockade in the treatment of adult solid tumors has prompted the exploration of immunotherapy in NB; however, clinical evidence indicates that the vast majority of NB patients do not respond to single-agent checkpoint inhibitors. This motivates a need for therapeutic strategies to increase NB tumor immunogenicity. The goal of this study was to evaluate a new immunotherapeutic strategy for NB based on potent activation of the stimulator of interferon genes (STING) pathway. METHODS: To promote STING activation in NB cells and tumors, we utilized STING-activating nanoparticles (STING-NPs) that are designed to mediate efficient cytosolic delivery of the endogenous STING ligand, 2'3'-cGAMP. We investigated tumor-intrinsic responses to STING activation in both MYCN-amplified and non-amplified NB cell lines, evaluating effects on STING signaling, apoptosis, and the induction of immunogenic cell death. The effects of intratumoral administration of STING-NPs on CD8+ T cell infiltration, tumor growth, and response to response to PD-L1 checkpoint blockade were evaluated in syngeneic models of MYCN-amplified and non-amplified NB. RESULTS: The efficient cytosolic delivery of 2'3'-cGAMP enabled by STING-NPs triggered tumor-intrinsic STING signaling effects in both MYCN-amplified and non-amplified NB cell lines, resulting in increased expression of interferon-stimulated genes and pro-inflammatory cytokines as well as NB cell death at concentrations 2000-fold to 10000-fold lower than free 2'3'-cGAMP. STING-mediated cell death in NB was associated with release or expression of several danger associated molecular patterns that are hallmarks of immunogenic cell death, which was further validated via cell-based vaccination and tumor challenge studies. Intratumoral administration of STING-NPs enhanced STING activation relative to free 2'3'-cGAMP in NB tumor models, converting poorly immunogenic tumors into tumoricidal and T cell-inflamed microenvironments and resulting in inhibition of tumor growth, increased survival, and induction of immunological memory that protected against tumor re-challenge. In a model of MYCN-amplified NB, STING-NPs generated an abscopal response that inhibited distal tumor growth and improved response to PD-L1 immune checkpoint blockade. CONCLUSIONS: We have demonstrated that activation of the STING pathway, here enabled by a nanomedicine approach, stimulates immunogenic cell death and remodels the tumor immune microenvironment to inhibit NB tumor growth and improve responses to immune checkpoint blockade, providing a multifaceted immunotherapeutic approach with potential to enhance immunotherapy outcomes in NB.


Subject(s)
Immunogenic Cell Death/immunology , Immunotherapy/methods , Membrane Proteins/metabolism , Neuroblastoma/therapy , Humans , Neuroblastoma/immunology , Signal Transduction
18.
Clin Cancer Res ; 26(12): 2972-2985, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32098769

ABSTRACT

PURPOSE: To investigate how induced tumor heterogeneity influences immune responses to radiotherapy with different proportions of mixed immune-responsive and unresponsive tumor cells in a triple-negative breast cancer model. It is hypothesized that studying the immune environment of mixed tumors and responses to radiotherapy could nominate immune active therapies to enhance immune responses after radiotherapy. EXPERIMENTAL DESIGN: Evaluate efficacy and immune responses generated by radiotherapy in tumors with different proportions of immunologically responsive and unresponsive tumor cells. Then study the cellular responses and transcriptomic differences between the tumors to nominate immunotherapy combinations with radiotherapy and evaluate the combination. RESULTS: The addition of the responsive cells to unresponsive tumors led to a greater than expected therapeutic response to radiotherapy with both innate and adaptive immune components. There was a distinct change in myeloid cells, greater inflammatory macrophage activity, and enhanced antigen presentation with responsive cells after radiotherapy. Because differences in matrix components, cell adhesion biology, and innate immune signaling correlated with myeloid cell response and phenotype, we hypothesized that radiotherapy combined with CD40 agonist antibody would sensitize unresponsive tumors. The combination therapy resulted in improved innate and adaptive immune response. Importantly, CD40 treatment increased tumor response to radiotherapy and protected against metastatic spread in a metastatic model. CONCLUSIONS: These data combined with transcriptomics from human patients support radiotherapy and myeloid cell targeting for immunologically cold tumors. The established study model presents opportunities to investigate the complex overlapping biologic mechanisms that limit immunotherapy and to implement radiotherapy with different immunotherapy combinations.


Subject(s)
Breast Neoplasms/pathology , Immunotherapy/mortality , Radioimmunotherapy/mortality , Radiotherapy/mortality , Animals , Apoptosis , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Cell Proliferation , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
Nat Cancer ; 1(2): 184-196, 2020 02.
Article in English | MEDLINE | ID: mdl-33768207

ABSTRACT

2'3'-cyclic GMP-AMP (cGAMP) is an intracellular second messenger that is synthesized in response to cytosolic double-stranded DNA and activates the innate immune STING pathway. Our previous discovery of its extracellular hydrolase ENPP1 hinted at the existence of extracellular cGAMP. Here, we detected that cGAMP is continuously exported but then efficiently cleared by ENPP1, explaining why it has previously escaped detection. By developing potent, specific, and cell impermeable ENPP1 inhibitors, we found that cancer cells continuously export cGAMP in culture at steady state and at higher levels when treated with ionizing radiation (IR). In mouse tumors, depletion of extracellular cGAMP decreased tumor-associated immune cell infiltration and abolished the curative effect of IR. Boosting extracellular cGAMP with ENPP1 inhibitors synergized with IR to delay tumor growth. In conclusion, extracellular cGAMP is an anti-cancer immunotransmitter that could be harnessed to treat cancers with low immunogenicity.


Subject(s)
Neoplasms , Nucleotides, Cyclic , Animals , Mice , Neoplasms/radiotherapy , Nucleotides, Cyclic/genetics , Second Messenger Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...