Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 49(12): 7011-7034, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34125917

ABSTRACT

The modification of adenosine to inosine at the wobble position (I34) of tRNA anticodons is an abundant and essential feature of eukaryotic tRNAs. The expansion of inosine-containing tRNAs in eukaryotes followed the transformation of the homodimeric bacterial enzyme TadA, which generates I34 in tRNAArg and tRNALeu, into the heterodimeric eukaryotic enzyme ADAT, which modifies up to eight different tRNAs. The emergence of ADAT and its larger set of substrates, strongly influenced the tRNA composition and codon usage of eukaryotic genomes. However, the selective advantages that drove the expansion of I34-tRNAs remain unknown. Here we investigate the functional relevance of I34-tRNAs in human cells and show that a full complement of these tRNAs is necessary for the translation of low-complexity protein domains enriched in amino acids cognate for I34-tRNAs. The coding sequences for these domains require codons translated by I34-tRNAs, in detriment of synonymous codons that use other tRNAs. I34-tRNA-dependent low-complexity proteins are enriched in functional categories related to cell adhesion, and depletion in I34-tRNAs leads to cellular phenotypes consistent with these roles. We show that the distribution of these low-complexity proteins mirrors the distribution of I34-tRNAs in the phylogenetic tree.


Subject(s)
Inosine/metabolism , Protein Biosynthesis , RNA, Transfer/metabolism , Adenosine Deaminase/genetics , Cell Adhesion , Cell Growth Processes , Cell Line , Codon , Eukaryota/genetics , Female , HEK293 Cells , Humans , Protein Domains/genetics , Protein Synthesis Inhibitors/pharmacology , RNA, Messenger/metabolism , RNA, Transfer/chemistry , Ribosomes/metabolism
2.
RNA ; 25(5): 607-619, 2019 05.
Article in English | MEDLINE | ID: mdl-30737359

ABSTRACT

Adenosine deaminase acting on transfer RNA (ADAT) is an essential eukaryotic enzyme that catalyzes the deamination of adenosine to inosine at the first position of tRNA anticodons. Mammalian ADATs modify eight different tRNAs, having increased their substrate range from a bacterial ancestor that likely deaminated exclusively tRNAArg Here we investigate the recognition mechanisms of tRNAArg and tRNAAla by human ADAT to shed light on the process of substrate expansion that took place during the evolution of the enzyme. We show that tRNA recognition by human ADAT does not depend on conserved identity elements, but on the overall structural features of tRNA. We find that ancestral-like interactions are conserved for tRNAArg, while eukaryote-specific substrates use alternative mechanisms. These recognition studies show that human ADAT can be inhibited by tRNA fragments in vitro, including naturally occurring fragments involved in important regulatory pathways.


Subject(s)
Adenosine Deaminase/metabolism , Anticodon/chemistry , RNA, Transfer, Ala/chemistry , RNA, Transfer, Arg/chemistry , Adenosine/metabolism , Adenosine Deaminase/genetics , Anticodon/genetics , Anticodon/metabolism , Base Sequence , Deamination , Evolution, Molecular , Gene Expression , Humans , Inosine/metabolism , Nucleic Acid Conformation , RNA, Transfer, Ala/genetics , RNA, Transfer, Ala/metabolism , RNA, Transfer, Arg/genetics , RNA, Transfer, Arg/metabolism , Sequence Alignment , Substrate Specificity
3.
Mol Biol Evol ; 36(4): 650-662, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30590541

ABSTRACT

The modification of adenosine to inosine at the first position of transfer RNA (tRNA) anticodons (I34) is widespread among bacteria and eukaryotes. In bacteria, the modification is found in tRNAArg and is catalyzed by tRNA adenosine deaminase A, a homodimeric enzyme. In eukaryotes, I34 is introduced in up to eight different tRNAs by the heterodimeric adenosine deaminase acting on tRNA. This substrate expansion significantly influenced the evolution of eukaryotic genomes in terms of codon usage and tRNA gene composition. However, the selective advantages driving this process remain unclear. Here, we have studied the evolution of I34, tRNA adenosine deaminase A, adenosine deaminase acting on tRNA, and their relevant codons in a large set of bacterial and eukaryotic species. We show that a functional expansion of I34 to tRNAs other than tRNAArg also occurred within bacteria, in a process likely initiated by the emergence of unmodified A34-containing tRNAs. In eukaryotes, we report on a large variability in the use of I34 in protists, in contrast to a more uniform presence in fungi, plans, and animals. Our data support that the eukaryotic expansion of I34-tRNAs was driven by the improvement brought by these tRNAs to the synthesis of proteins highly enriched in certain amino acids.


Subject(s)
Evolution, Molecular , Inosine , RNA, Transfer/genetics , Animals , Oenococcus/genetics , Phylogeny , Proteome , Tetrahymena thermophila/genetics
4.
RNA Biol ; 15(4-5): 500-507, 2018.
Article in English | MEDLINE | ID: mdl-28880718

ABSTRACT

The modification of adenosine to inosine at position 34 of tRNA anticodons has a profound impact upon codon-anticodon recognition. In bacteria, I34 is thought to exist only in tRNAArg, while in eukaryotes the modification is present in eight different tRNAs. In eukaryotes, the widespread use of I34 strongly influenced the evolution of genomes in terms of tRNA gene abundance and codon usage. In humans, codon usage indicates that I34 modified tRNAs are preferred for the translation of highly repetitive coding sequences, suggesting that I34 is an important modification for the synthesis of proteins of highly skewed amino acid composition. Here we extend the analysis of distribution of codons that are recognized by I34 containing tRNAs to all phyla known to use this modification. We find that the preference for codons recognized by such tRNAs in genes with highly biased codon compositions is universal among eukaryotes, and we report that, unexpectedly, some bacterial phyla show a similar preference. We demonstrate that the genomes of these bacterial species contain previously undescribed tRNA genes that are potential substrates for deamination at position 34.


Subject(s)
Codon/chemistry , Cyanobacteria/genetics , Eukaryota/genetics , Firmicutes/genetics , Genetic Code , Inosine/metabolism , RNA, Transfer, Arg/genetics , Adenosine/genetics , Adenosine/metabolism , Amino Acids/genetics , Amino Acids/metabolism , Anticodon/chemistry , Anticodon/metabolism , Biological Evolution , Codon/metabolism , Cyanobacteria/metabolism , Eukaryota/metabolism , Firmicutes/metabolism , Humans , Inosine/genetics , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer, Arg/metabolism , Transcriptome
5.
Life (Basel) ; 7(2)2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28379164

ABSTRACT

The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.

6.
Int J Mol Sci ; 16(8): 17303-14, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26230688

ABSTRACT

Nucleotide modifications in the anticodons of transfer RNAs (tRNA) play a central role in translation efficiency, fidelity, and regulation of translation, but, for most of these modifications, the details of their function remain unknown. The heterodimeric adenosine deaminases acting on tRNAs (ADAT2-ADAT3, or ADAT) are enzymes present in eukaryotes that convert adenine (A) to inosine (I) in the first anticodon base (position 34) by hydrolytic deamination. To explore the influence of ADAT activity on mammalian translation, we have characterized the human transcriptome and proteome in terms of frequency and distribution of ADAT-related codons. Eight different tRNAs can be modified by ADAT and, once modified, these tRNAs will recognize NNC, NNU and NNA codons, but not NNG codons. We find that transcripts coding for proteins highly enriched in these eight amino acids (ADAT-aa) are specifically enriched in NNC, NNU and NNA codons. We also show that the proteins most enriched in ADAT-aa are composed preferentially of threonine, alanine, proline, and serine (TAPS). We propose that the enrichment in ADAT-codons in these proteins is due to the similarities in the codons that correspond to TAPS.


Subject(s)
AMP Deaminase/metabolism , Codon/chemistry , Transcriptome , Codon/genetics , Codon/metabolism , Genome, Human , Humans , Proteome/chemistry , Proteome/genetics , Proteome/metabolism , RNA, Transfer/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...