Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
ERJ Open Res ; 9(4)2023 Jul.
Article in English | MEDLINE | ID: mdl-37650090

ABSTRACT

Respiratory waveforms can be reduced to simple metrics, such as rate, but this may miss information about waveform shape and whole breathing pattern. A novel analysis method quantifying the whole waveform shape identifies AECOPD earlier. https://bit.ly/3M6uIEB.

2.
Auton Neurosci ; 248: 103104, 2023 09.
Article in English | MEDLINE | ID: mdl-37393657

ABSTRACT

BACKGROUND: Dysfunctional breathing (DB) resulting in inappropriate breathlessness is common in individuals living with postural orthostatic tachycardia syndrome (POTS). DB in POTS is complex, multifactorial, and not routinely assessed clinically outside of specialist centres. To date DB in POTS has been identified and diagnosed predominately via cardiopulmonary exercise testing (CPEX), hyperventilation provocation testing and/or specialist respiratory physiotherapy assessment. The Breathing Pattern Assessment Tool (BPAT) is a clinically validated diagnostic tool for DB in Asthma. There are, however, no published data regarding the use of the BPAT in POTS. The aim of this study was therefore to assess the potential clinic utility of the BPAT in the diagnosis of DB in individuals with POTS. METHODS: A retrospective observational cohort study of individuals with POTS referred to respiratory physiotherapy for formal assessment of DB. DB was determined by specialist respiratory physiotherapist assessment which included physical assessment of chest wall movement/breathing pattern. The BPAT and Nijgmegen questionnaire were also completed. Receiver operating characteristics (ROC) analysis was used to compare the physiotherapy assessment based diagnosis of DB to the BPAT score. RESULTS: Seventy-seven individuals with POTS [mean (sd) age 32 (11) years, 71 (92 %) female] were assessed by a specialist respiratory physiotherapist, with 65 (84 %) being diagnosed with DB. Using the established BPAT cut off of four or more, receiver operating characteristics (ROC) analysis indicated a sensitivity of 87 % and specificity of 75 % for diagnosing DB in individuals with POTS with an area under the curve (AUC) of 0.901 (95 % CI 0.803-0.999), demonstrating excellent discriminatory ability. CONCLUSION: BPAT has high sensitivity and moderate specificity for identifying DB in individuals living with POTS.


Subject(s)
Postural Orthostatic Tachycardia Syndrome , Humans , Female , Adult , Male , Postural Orthostatic Tachycardia Syndrome/diagnosis , Retrospective Studies , Respiration , Dyspnea/diagnosis , Dyspnea/etiology , Hyperventilation/diagnosis
3.
Front Physiol ; 14: 1089837, 2023.
Article in English | MEDLINE | ID: mdl-36998983

ABSTRACT

Background: Electrical stimulation has recently been introduced to treat patients with Obstructive sleep apnoea There are, however, few data on the effects of transcutaneous submental electrical stimulation (TES) on the cardiovascular system. We studied the effect of TES on cardiorespiratory variables in healthy volunteers during head-down-tilt (HDT) induced baroreceptor loading. Method: Cardiorespiratory parameters (blood pressure, heart rate, respiratory rate, tidal volume, airflow/minute ventilation, oxygen saturation, and end-tidal CO2/O2 concentration) were recorded seated, supine, and during head-down-tilt (50) under normoxic, hypercapnic (FiCO2 5%) and poikilocapnic hypoxic (FiO2 12%) conditions. Blood pressure (BP) was measured non-invasively and continuously (Finapres). Gas conditions were applied in random order. All participants were studied twice on different days, once without and once with TES. Results: We studied 13 healthy subjects (age 29 (12) years, six female, body mass index (BMI) 23.23 (1.6) kg·m-2). A three-way ANOVA indicated that BP decreased significantly with TES (systolic: p = 4.93E-06, diastolic: p = 3.48E-09, mean: p = 3.88E-08). Change in gas condition (systolic: p = 0.0402, diastolic: p = 0.0033, mean: p = 0.0034) and different postures (systolic: 8.49E-08, diastolic: p = 6.91E-04, mean: p = 5.47E-05) similarly impacted on BP control. When tested for interaction, there were no significant associations between the three different factors electrical stimulation, gas condition, or posture, except for an effect on minute ventilation (gas condition/posture p = 0.0369). Conclusion: Transcutaneous electrical stimulation has a substantial impact on the blood pressure. Similarly, postural changes and variations in inspired gas impact on blood pressure control. Finally, there was an interaction between posture and inspired gases that affects minute ventilation. These observations have implications on our understanding of integrated cardiorespiratory control, and may prove beneficial for patients with SDB who are assessed for treatment with electrical stimulation.

4.
Chest ; 163(5): 1130-1143, 2023 05.
Article in English | MEDLINE | ID: mdl-36563873

ABSTRACT

BACKGROUND: Common, operational definitions are crucial to assess interventions and outcomes related to pediatric mechanical ventilation. These definitions can reduce unnecessary variability among research and quality improvement efforts, to ensure findings are generalizable, and can be pooled to establish best practices. RESEARCH QUESTION: Can we establish operational definitions for key elements related to pediatric ventilator liberation using a combination of detailed literature review and consensus-based approaches? STUDY DESIGN AND METHODS: A panel of 26 international experts in pediatric ventilator liberation, two methodologists, and two librarians conducted systematic reviews on eight topic areas related to pediatric ventilator liberation. Through a series of virtual meetings, we established draft definitions that were voted upon using an anonymous web-based process. Definitions were revised by incorporating extracted data gathered during the systematic review and discussed in another consensus meeting. A second round of voting was conducted to confirm the final definitions. RESULTS: In eight topic areas identified by the experts, 16 preliminary definitions were established. Based on initial discussion and the first round of voting, modifications were suggested for 11 of the 16 definitions. There was significant variability in how these items were defined in the literature reviewed. The final round of voting achieved ≥ 80% agreement for all 16 definitions in the following areas: what constitutes respiratory support (invasive mechanical ventilation and noninvasive respiratory support), liberation and failed attempts to liberate from invasive mechanical ventilation, liberation from respiratory support, duration of noninvasive respiratory support, total duration of invasive mechanical ventilation, spontaneous breathing trials, extubation readiness testing, 28 ventilator-free days, and planned vs rescue use of post-extubation noninvasive respiratory support. INTERPRETATION: We propose that these consensus-based definitions for elements of pediatric ventilator liberation, informed by evidence, be used for future quality improvement initiatives and research studies to improve generalizability and facilitate comparison.


Subject(s)
Respiration, Artificial , Ventilator Weaning , Humans , Child , Ventilators, Mechanical , Research Design , Airway Extubation
5.
Am J Respir Crit Care Med ; 207(1): 17-28, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36583619

ABSTRACT

Rationale: Pediatric-specific ventilator liberation guidelines are lacking despite the many studies exploring elements of extubation readiness testing. The lack of clinical practice guidelines has led to significant and unnecessary variation in methods used to assess pediatric patients' readiness for extubation. Methods: Twenty-six international experts comprised a multiprofessional panel to establish pediatrics-specific ventilator liberation clinical practice guidelines, focusing on acutely hospitalized children receiving invasive mechanical ventilation for more than 24 hours. Eleven key questions were identified and first prioritized using the Modified Convergence of Opinion on Recommendations and Evidence. A systematic review was conducted for questions that did not meet an a priori threshold of ⩾80% agreement, with Grading of Recommendations, Assessment, Development, and Evaluation methodologies applied to develop the guidelines. The panel evaluated the evidence and drafted and voted on the recommendations. Measurements and Main Results: Three questions related to systematic screening using an extubation readiness testing bundle and a spontaneous breathing trial as part of the bundle met Modified Convergence of Opinion on Recommendations criteria of ⩾80% agreement. For the remaining eight questions, five systematic reviews yielded 12 recommendations related to the methods and duration of spontaneous breathing trials, measures of respiratory muscle strength, assessment of risk of postextubation upper airway obstruction and its prevention, use of postextubation noninvasive respiratory support, and sedation. Most recommendations were conditional and based on low to very low certainty of evidence. Conclusions: This clinical practice guideline provides a conceptual framework with evidence-based recommendations for best practices related to pediatric ventilator liberation.


Subject(s)
Respiration, Artificial , Sepsis , Humans , Child , Respiration, Artificial/methods , Ventilator Weaning/methods , Ventilators, Mechanical , Airway Extubation/methods
6.
J Neuromuscul Dis ; 9(4): 503-516, 2022.
Article in English | MEDLINE | ID: mdl-35694931

ABSTRACT

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a life-threatening congenital myopathy that, in most cases, is characterized by profound muscle weakness, respiratory failure, need for mechanical ventilation and gastrostomy feeding, and early death. OBJECTIVE: We aimed to characterize the neuromuscular, respiratory, and extramuscular burden of XLMTM in a prospective, longitudinal study. METHODS: Thirty-four participants < 4 years old with XLMTM and receiving ventilator support enrolled in INCEPTUS, a prospective, multicenter, non-interventional study. Disease-related adverse events, respiratory and motor function, feeding, secretions, and quality of life were assessed. RESULTS: During median (range) follow-up of 13.0 (0.5, 32.9) months, there were 3 deaths (aspiration pneumonia; cardiopulmonary failure; hepatic hemorrhage with peliosis) and 61 serious disease-related events in 20 (59%) participants, mostly respiratory (52 events, 18 participants). Most participants (80%) required permanent invasive ventilation (>16 hours/day); 20% required non-invasive support (6-16 hours/day). Median age at tracheostomy was 3.5 months (95% CI: 2.5, 9.0). Thirty-three participants (97%) required gastrostomy. Thirty-one (91%) participants had histories of hepatic disease and/or prospectively experienced related adverse events or laboratory or imaging abnormalities. CHOP INTEND scores ranged from 19-52 (mean: 35.1). Seven participants (21%) could sit unsupported for≥30 seconds (one later lost this ability); none could pull to stand or walk with or without support. These parameters remained static over time across the INCEPTUS cohort. CONCLUSIONS: INCEPTUS confirmed high medical impact, static respiratory, motor and feeding difficulties, and early death in boys with XLMTM. Hepatobiliary disease was identified as an under-recognized comorbidity. There are currently no approved disease-modifying treatments.


Subject(s)
Myopathies, Structural, Congenital , Quality of Life , Child, Preschool , Genetic Therapy , Humans , Longitudinal Studies , Male , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/therapy , Prospective Studies
7.
IEEE J Biomed Health Inform ; 26(7): 3385-3396, 2022 07.
Article in English | MEDLINE | ID: mdl-35404825

ABSTRACT

This study explored the use of parasternal second intercostal space and lower intercostal space surface electromyogram (sEMG) and surface mechanomyogram (sMMG) recordings (sEMGpara and sMMGpara, and sEMGlic and sMMGlic, respectively) to assess neural respiratory drive (NRD), neuromechanical (NMC) and neuroventilatory (NVC) coupling, and mechanical efficiency (MEff) noninvasively in healthy subjects and chronic obstructive pulmonary disease (COPD) patients. sEMGpara, sMMGpara, sEMGlic, sMMGlic, mouth pressure (Pmo), and volume (Vi) were measured at rest, and during an inspiratory loading protocol, in 16 COPD patients (8 moderate and 8 severe) and 9 healthy subjects. Myographic signals were analyzed using fixed sample entropy and normalized to their largest values (fSEsEMGpara%max, fSEsMMGpara%max, fSEsEMGlic%max, and fSEsMMGlic%max). fSEsMMGpara%max, fSEsEMGpara%max, and fSEsEMGlic%max were significantly higher in COPD than in healthy participants at rest. Parasternal intercostal muscle NMC was significantly higher in healthy than in COPD participants at rest, but not during threshold loading. Pmo-derived NMC and MEff ratios were lower in severe patients than in mild patients or healthy subjects during threshold loading, but differences were not consistently significant. During resting breathing and threshold loading, Vi-derived NVC and MEff ratios were significantly lower in severe patients than in mild patients or healthy subjects. sMMG is a potential noninvasive alternative to sEMG for assessing NRD in COPD. The ratios of Pmo and Vi to sMMG and sEMG measurements provide wholly noninvasive NMC, NVC, and MEff indices that are sensitive to impaired respiratory mechanics in COPD and are therefore of potential value to assess disease severity in clinical practice.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Electromyography/methods , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Respiration , Respiratory Mechanics , Severity of Illness Index
8.
Aerosp Med Hum Perform ; 92(8): 633-641, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34503616

ABSTRACT

AbstractBACKGROUND: Members of the public will soon be taking commercial suborbital spaceflights with significant Gx (chest-to-back) acceleration potentially reaching up to 6 Gx. Pulmonary physiology is gravity-dependent and is likely to be affected, which may have clinical implications for medically susceptible individuals.METHODS: During 2-min centrifuge exposures ranging up to 6 Gx, 11 healthy subjects were studied using advanced respiratory techniques. These sustained exposures were intended to allow characterization of the underlying pulmonary response and did not replicate actual suborbital G profiles. Regional distribution of ventilation in the lungs was determined using electrical impedance tomography. Neural respiratory drive (from diaphragm electromyography) and work of breathing (from transdiaphragmatic pressures) were obtained via nasoesophageal catheters. Arterial blood gases were measured in a subset of subjects. Measurements were conducted while breathing air and breathing 15 oxygen to simulate anticipated cabin pressurization conditions.RESULTS: Acceleration caused hypoxemia that worsened with increasing magnitude and duration of Gx. Minimum arterial oxygen saturation at 6 Gx was 86 1 breathing air and 79 1 breathing 15 oxygen. With increasing Gx the alveolar-arterial (A-a) oxygen gradient widened progressively and the relative distribution of ventilation reversed from posterior to anterior lung regions with substantial gas-trapping anteriorly. Severe breathlessness accompanied large progressive increases in work of breathing and neural respiratory drive.DISCUSSION: Sustained high-G acceleration at magnitudes relevant to suborbital flight profoundly affects respiratory physiology. These effects may become clinically important in the most medically susceptible passengers, in whom the potential role of centrifuge-based preflight evaluation requires further investigation.Pollock RD, Jolley CJ, Abid N, Couper JH, Estrada-Petrocelli L, Hodkinson PD, Leonhardt S, Mago-Elliott S, Menden T, Rafferty G, Richmond G, Robbins PA, Ritchie GAD, Segal MJ, Stevenson AT, Tank HD, Smith TG. Pulmonary effects of sustained periods of high-G acceleration relevant to suborbital spaceflight. Aerosp Med Hum Perform. 2021; 92(7):633641.


Subject(s)
Aerospace Medicine , Space Flight , Acceleration , Centrifugation , Gravitation , Humans
10.
Sensors (Basel) ; 21(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806463

ABSTRACT

This study aims to investigate noninvasive indices of neuromechanical coupling (NMC) and mechanical efficiency (MEff) of parasternal intercostal muscles. Gold standard assessment of diaphragm NMC requires using invasive techniques, limiting the utility of this procedure. Noninvasive NMC indices of parasternal intercostal muscles can be calculated using surface mechanomyography (sMMGpara) and electromyography (sEMGpara). However, the use of sMMGpara as an inspiratory muscle mechanical output measure, and the relationships between sMMGpara, sEMGpara, and simultaneous invasive and noninvasive pressure measurements have not previously been evaluated. sEMGpara, sMMGpara, and both invasive and noninvasive measurements of pressures were recorded in twelve healthy subjects during an inspiratory loading protocol. The ratios of sMMGpara to sEMGpara, which provided muscle-specific noninvasive NMC indices of parasternal intercostal muscles, showed nonsignificant changes with increasing load, since the relationships between sMMGpara and sEMGpara were linear (R2 = 0.85 (0.75-0.9)). The ratios of mouth pressure (Pmo) to sEMGpara and sMMGpara were also proposed as noninvasive indices of parasternal intercostal muscle NMC and MEff, respectively. These indices, similar to the analogous indices calculated using invasive transdiaphragmatic and esophageal pressures, showed nonsignificant changes during threshold loading, since the relationships between Pmo and both sEMGpara (R2 = 0.84 (0.77-0.93)) and sMMGpara (R2 = 0.89 (0.85-0.91)) were linear. The proposed noninvasive NMC and MEff indices of parasternal intercostal muscles may be of potential clinical value, particularly for the regular assessment of patients with disordered respiratory mechanics using noninvasive wearable and wireless devices.


Subject(s)
Diaphragm , Intercostal Muscles , Electromyography , Healthy Volunteers , Humans , Respiratory Mechanics
12.
BMJ Open Respir Res ; 7(1)2020 12.
Article in English | MEDLINE | ID: mdl-33293357

ABSTRACT

BACKGROUND: Neurally adjusted ventilatory assist (NAVA) involves an intricate interaction between patient, clinician and technology. To improve our understanding of this complex intervention and to inform future trials, this survey aimed to examine clinician attitudes, beliefs and barriers to NAVA use in critically ill adults within an institution with significant NAVA experience. METHODS: A survey of nurses, doctors and physiotherapists in four Intensive Care Units (ICUs) of one UK university-affiliated hospital (75 NAVA equipped beds). The survey consisted of 39 mixed open and structured questions. The hospital had 8 years of NAVA experience prior to the survey. RESULTS: Of 466 distributed questionnaires, 301 (64.6%) were returned from 236 nurses (78.4%), 53 doctors (17.6%) and 12 physiotherapists (4.0%). Overall, 207/294 (70.4%) reported clinical experience. Most agreed that NAVA was safe (136/177, 76.8%) and clinically effective (99/176, 56.3%) and most perceived 'improved synchrony', 'improved comfort' and 'monitoring the diaphragm' to be key advantages of NAVA. 'Technical issues' (129/189, 68.3%) and 'NAVA signal problems' (94/180, 52.2%) were the most cited clinical disadvantage and cause of mode cross-over to Pressure Support Ventilation (PSV), respectively. Most perceived NAVA to be more difficult to use than PSV (105/174, 60.3%), although results were mixed when compared across different tasks. More participants preferred PSV to NAVA for initiating ventilator weaning (93/171 (54.4%) vs 29/171 (17.0%)). A key barrier to use and a consistent theme throughout was 'low confidence' in relation to NAVA use. CONCLUSIONS: In addition to broad clinician support for NAVA, this survey describes technical concerns, low confidence and a perception of difficulty above that associated with PSV. In this context, high-quality training and usage algorithms are critically important to the design and of future trials, to clinician acceptance and to the clinical implementation and future success of NAVA.


Subject(s)
Interactive Ventilatory Support , Adult , Critical Care , Humans , Positive-Pressure Respiration , Surveys and Questionnaires , Ventilator Weaning
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2740-2743, 2020 07.
Article in English | MEDLINE | ID: mdl-33018573

ABSTRACT

Lung sound (LS) signals are often contaminated by impulsive artifacts that complicate the estimation of lung sound intensity (LSI) using conventional amplitude estimators. Fixed sample entropy (fSampEn) has proven to be robust to cardiac artifacts in myographic respiratory signals. Similarly, fSampEn is expected to be robust to artifacts in LS signals, thus providing accurate LSI estimates. However, the choice of fSampEn parameters depends on the application and fSampEn has not previously been applied to LS signals. This study aimed to perform an evaluation of the performance of the most relevant fSampEn parameters on LS signals, and to propose optimal fSampEn parameters for LSI estimation. Different combinations of fSampEn parameters were analyzed in LS signals recorded in a heterogeneous population of healthy subjects and chronic obstructive pulmonary disease patients during loaded breathing. The performance of fSampEn was assessed by means of its cross-covariance with flow signals, and optimal fSampEn parameters for LSI estimation were proposed.


Subject(s)
Respiratory Sounds , Signal Processing, Computer-Assisted , Artifacts , Entropy , Heart , Humans
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2744-2747, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33018574

ABSTRACT

Respiratory sounds yield pertinent information about respiratory function in both health and disease. Normal lung sound intensity is a characteristic that correlates well with airflow and it can therefore be used to quantify the airflow changes and limitations imposed by respiratory diseases. The dual aims of this study are firstly to establish whether previously reported asymmetries in normal lung sound intensity are affected by varying the inspiratory threshold load or the airflow of respiration, and secondly to investigate whether fixed sample entropy can be used as a valid measure of lung sound intensity. Respiratory sounds were acquired from twelve healthy individuals using four contact microphones on the posterior skin surface during an inspiratory threshold loading protocol and a varying airflow protocol. The spatial distribution of the normal lung sounds intensity was examined. During the protocols explored here the normal lung sound intensity in the left and right lungs in healthy populations was found to be similar, with asymmetries of less than 3 dB. This agrees with values reported in other studies. The fixed sample entropy of the respiratory sound signal was also calculated and compared with the gold standard root mean square representation of lung sound intensity showing good agreement.


Subject(s)
Lung , Respiratory Sounds , Humans , Respiration , Sound
15.
BMJ Open Respir Res ; 7(1)2020 07.
Article in English | MEDLINE | ID: mdl-32631927

ABSTRACT

The Association for Respiratory Technology & Physiology (ARTP) last produced a statement on the performance of lung function testing in 1994. At that time the focus was on a practical statement for people working in lung function laboratories. Since that time there have been many technological advances and alterations to best practice in the measurement and interpretation of lung function assessments. In light of these advances an update was warranted. ARTP, therefore, have provided within this document, where available, the most up-to-date and evidence-based recommendations for the most common lung function assessments performed in laboratories across the UK. These recommendations set out the requirements and considerations that need to be made in terms of environmental and patient factors that may influence both the performance and interpretation of lung function tests. They also incorporate procedures to ensure quality assured diagnostic investigations that include those associated with equipment, the healthcare professional conducting the assessments and the results achieved by the subject. Each section aims to outline the common parameters provided for each investigation, a brief principle behind the measurements (where applicable), and suggested acceptability and reproducibility criteria.


Subject(s)
Laboratories/standards , Respiratory Function Tests/methods , Humans , Quality Control , Societies, Medical , United Kingdom
16.
Crit Care ; 24(1): 220, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32408883

ABSTRACT

BACKGROUND: The clinical effectiveness of neurally adjusted ventilatory assist (NAVA) has yet to be demonstrated, and preliminary studies are required. The study aim was to assess the feasibility of a randomized controlled trial (RCT) of NAVA versus pressure support ventilation (PSV) in critically ill adults at risk of prolonged mechanical ventilation (MV). METHODS: An open-label, parallel, feasibility RCT (n = 78) in four ICUs of one university-affiliated hospital. The primary outcome was mode adherence (percentage of time adherent to assigned mode), and protocol compliance (binary-≥ 65% mode adherence). Secondary exploratory outcomes included ventilator-free days (VFDs), sedation, and mortality. RESULTS: In the 72 participants who commenced weaning, median (95% CI) mode adherence was 83.1% (64.0-97.1%) and 100% (100-100%), and protocol compliance was 66.7% (50.3-80.0%) and 100% (89.0-100.0%) in the NAVA and PSV groups respectively. Secondary outcomes indicated more VFDs to D28 (median difference 3.0 days, 95% CI 0.0-11.0; p = 0.04) and fewer in-hospital deaths (relative risk 0.5, 95% CI 0.2-0.9; p = 0.032) for NAVA. Although overall sedation was similar, Richmond Agitation and Sedation Scale (RASS) scores were closer to zero in NAVA compared to PSV (p = 0.020). No significant differences were observed in duration of MV, ICU or hospital stay, or ICU, D28, and D90 mortality. CONCLUSIONS: This feasibility trial demonstrated good adherence to assigned ventilation mode and the ability to meet a priori protocol compliance criteria. Exploratory outcomes suggest some clinical benefit for NAVA compared to PSV. Clinical effectiveness trials of NAVA are potentially feasible and warranted. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01826890. Registered 9 April 2013.


Subject(s)
Interactive Ventilatory Support/standards , Respiration, Artificial/methods , Time Factors , Adult , Feasibility Studies , Female , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Interactive Ventilatory Support/statistics & numerical data , Length of Stay/statistics & numerical data , London , Male , Middle Aged , Respiration, Artificial/statistics & numerical data
17.
Exp Physiol ; 105(5): 842-851, 2020 05.
Article in English | MEDLINE | ID: mdl-32134528

ABSTRACT

NEW FINDINGS: What is the central question of this study? What are the mechanisms underlying impaired muscular endurance and accelerated fatigue during acute hypoxia? What is the main finding and its importance? Hypoxia had no effect on the electrochemical latency associated with muscle contraction elicited by supramaximal electrical motor nerve stimulation in vivo. This provides greater insight into the effects of hypoxia and fatigue on the mechanisms of muscle contraction in vivo. ABSTRACT: Acute hypoxia impairs muscle endurance and accelerates fatigue, but the underlying mechanisms, including any effects on muscle electrical activation, are incompletely understood. Electromyographic, mechanomyographic and force signals, elicited by common fibular nerve stimulation, were used to determine electromechanical delay (EMDTOT ) of the tibialis anterior muscle in normoxia and hypoxia ( FIO2 0.125) at rest and following fatiguing ankle dorsiflexor exercise (60% maximum voluntary contraction, 5 s on, 3 s off) in 12 healthy participants (mean (SD) age 27.4 (9.0) years). EMDTOT was determined from electromyographic to force signal onset, electrical activation latency from electromyographic to mechanomyographic (EMDE-M ) and mechanical latency from mechanomyographic to force (EMDM-F ). Twitch force fell significantly following fatiguing exercise in normoxia (46.8 (14.7) vs. 20.6 (14.3) N, P = 0.0002) and hypoxia (52.9 (15.4) vs. 28.8 (15.2) N, P = 0.0006). No effect of hypoxia on twitch force at rest was observed. Fatiguing exercise resulted in significant increases in mean (SD) EMDTOT in normoxia (Δ 4.7 (4.57) ms P = 0.0152) and hypoxia (Δ 3.7 (4.06) ms P = 0.0384) resulting from increased mean (SD) EMDM-F only (normoxia Δ 4.1 (4.1) ms P = 0.0391, hypoxia Δ 3.4 (3.6) ms P = 0.0303). Mean (SD) EMDE-M remained unchanged during normoxic (Δ 0.6 (1.08) ms) and hypoxic (Δ 0.25 (0.75) ms) fatiguing exercise. No differences in percentage change from baseline for twitch force, EMDTOT , EMDE-M and EMDM-F between normoxic and hypoxic fatigue conditions were observed. Hypoxia in isolation or in combination with fatigue had no effect on the electrochemical latency associated with electrically evoked muscle contraction.


Subject(s)
Exercise , Hypoxia , Muscle Fatigue , Muscle, Skeletal/physiology , Adult , Female , Humans , Male , Muscle Contraction , Young Adult
18.
Auton Neurosci ; 223: 102601, 2020 01.
Article in English | MEDLINE | ID: mdl-31743851

ABSTRACT

Postural orthostatic tachycardia syndrome (POTS) is a chronic, multifactorial syndrome with complex symptoms of orthostatic intolerance. Breathlessness is a prevalent symptom, however little is known about the aetiology. Anecdotal evidence suggests that breathless POTS patients commonly demonstrate dysfunctional breathing/hyperventilation syndrome (DB/HVS). There are, however, no published data regarding DB/HVS in POTS, and whether physiotherapy/breathing retraining may improve patients' breathing pattern and symptoms. The aim of this study was to explore the potential impact of a physiotherapy intervention involving education and breathing control on DB/HVS in POTS. A retrospective observational cohort study of all patients with POTS referred to respiratory physiotherapy for treatment of DB/HVS over a 20-month period was undertaken. 100 patients (99 female, mean (standard deviation) age 31 (12) years) with a clinical diagnosis of DB/HV were referred, of which data was available for 66 patients pre - post intervention. Significant improvements in Nijmegen score, respiratory rate and breath hold time (seconds) were observed following treatment. These data provide a testable hypothesis that breathing retraining may provide breathless POTS patients with some symptomatic relief, thus improving their health-related quality of life. The intervention can be easily protocolised to ensure treatment fidelity. Our preliminary findings provide a platform for a subsequent randomised controlled trial of breathing retraining in POTS.


Subject(s)
Breathing Exercises/methods , Outcome Assessment, Health Care , Postural Orthostatic Tachycardia Syndrome/complications , Respiration Disorders/etiology , Respiration Disorders/therapy , Adult , Dyspnea/etiology , Dyspnea/therapy , Female , Humans , Hyperventilation/etiology , Hyperventilation/therapy , Male , Retrospective Studies , Young Adult
19.
J Thorac Dis ; 11(5): 2153-2164, 2019 May.
Article in English | MEDLINE | ID: mdl-31285910

ABSTRACT

Obstructive sleep apnoea (OSA) is a global health problem of increasing prevalence. Effective treatments are available with continuous positive airway pressure (CPAP) therapy and mandibular advancement devices (MAD). However, there is limited long-term adherence to therapy, as CPAP and MAD require permanent usage to avoid recurrence of the symptoms and adverse ill health. Alternative treatments would aid in the treatment cascade to manage OSA effectively whenever standard therapy has been trialled and failed. Hypoglossal nerve stimulation (HNS), an invasive approach to stimulate the pharyngeal dilator muscles of the upper airway during sleep, has been approved for the treatment of OSA by several healthcare systems in recent years. In parallel to the development of HNS, a non-invasive approach has been developed to deliver electrical stimulation. Transcutaneous electrical stimulation in obstructive sleep apnoea (TESLA) uses non-invasive electrical stimulation to increase neuromuscular tone of the upper airway dilator muscles of patients with OSA during sleep. Data from previous feasibility studies and randomised controlled trials have helped to identify a subgroup of patients who are "responders" to this treatment. However, further investigations are required to assess usability, functionality and task accomplishment of this novel treatment. Consideration of these factors in the study design of future clinical trials will strengthen research methodology and protocols, improve patient related outcome measures and assessments, to optimise this emerging therapeutical option. In this review, we will introduce a conceptual framework for the TESLA home programme highlighting qualitative aspects and outcomes.

20.
ERJ Open Res ; 5(2)2019 Apr.
Article in English | MEDLINE | ID: mdl-31205928

ABSTRACT

It is feasible and acceptable to deliver a home-based lower limb-specific resistance training (LLSRT) programme to patients with COPD. Individual patient improvements in walking distance and breathlessness severity were observed post-LLSRT intervention. http://bit.ly/30xYpWI.

SELECTION OF CITATIONS
SEARCH DETAIL
...