Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38083348

ABSTRACT

Infrared neural stimulation (INS) is a neuromodulation technique that involves short optical pulses delivered to the neural tissue, resulting in the initiation of action potentials. In this work, we studied the compound neural action potentials (CNAP) generated by INS in five ex vivo sciatic nerves. A 1470 nm laser emitting a sequence of 0.4 ms light pulses with a peak power of 10 W was used. A single 4 mJ stimulus is not capable of eliciting a nerve response. However, repetition of the optical stimuli resulted in the induction of CNAPs. Heat accumulation induced by repetition rates as high as 10 Hz may be involved in the increase in CNAP amplitude. This sensitization effect may help to reduce the pulse energy required to evoke CNAP. In addition, these results highlight the importance of investigating the role of the slow nerve temperature dynamics in INS.


Subject(s)
Hot Temperature , Infrared Rays , Rats , Animals , Sciatic Nerve/physiology , Action Potentials/physiology , Evoked Potentials
2.
Brain Sci ; 13(11)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38002525

ABSTRACT

This paper investigates brain-behaviour associations between interictal epileptic discharges and cognitive performance in a population of children with self-limited focal epilepsy with centro-temporal spikes (SeLECTS). Sixteen patients with SeLECTS underwent an extensive neuropsychological assessment, including verbal short-term and episodic memory, non-verbal short-term memory, attentional abilities and executive function. Two quantitative EEG indices were analysed, i.e., the Spike Wave Index (SWI) and the Spike Wave Frequency (SWF), and one qualitative EEG index, i.e., the EEG score, was used to evaluate the spreading of focal SW to other parts of the brain. We investigated associations between EEG indices and neuropsychological performance with non-parametric Spearman correlation analyses, including correction for multiple comparisons. The results showed a significant negative correlation between (i) the awake EEG score and the Block Tapping Test, a visuo-spatial short-term memory task, and (ii) the sleep SWI and the Tower of London, a visuo-spatial planning task (pcorr < 0.05). These findings suggest that, in addition to the usual quantitative EEG indices, the EEG analysis should include the qualitative EEG score evaluating the spreading of focal SW to other parts of the brain and that neuropsychological assessment should include visuo-spatial skills.

3.
Biomed Phys Eng Express ; 9(5)2023 07 20.
Article in English | MEDLINE | ID: mdl-37406619

ABSTRACT

Objective.Phantoms that mimic healthy or diseased organ properties can complement animal models for surgical planning, training, and medical device development. If urodynamic studies rely on pressure-volume curves to assess lower urinary tract symptoms, there is an unsatisfied need for a bladder phantom that accurately mimics the bladder stretching capabilities and compliant behaviour during physiological filling.Approach.We demonstrate the suitability of water-soluble 3D-printed moulds as a versatile method to fabricate accurate phantoms with anatomical structures reconstructed from medical images. We report a phantom fabricated with silicone rubber. A wire net limits the silicone expansion to model the cystometric capacity. A mathematical model describes the pressure increase due to passive hyperelastic properties.Main results.The phantom reproduces the bladder's mechanical properties during filling. The pressure-volume curve measured on the phantom is typical of cystometric studies, with a compliance of 25.2 ± 1mlcmH2O-1.The root-mean-square error between the theoretical model and experimental data is 2.7cmH2O.The compliance, bladder wall thickness, cystometric capacity and pressure near the cystometric capacity of the phantom can be tuned to mimic various pathologies or human variability.Significance.The manufacturing method is suitable for fabricating bladder and other soft and hollow organ phantoms. The mathematical model provides a method to determine design parameters to model healthy or diseased bladders. Soft hollow organ phantoms can be used to complement animal experimentations for developing and validating medical devices aiming to be anchored on these organs or monitor their activity through pressure and strain measurement.


Subject(s)
Pelvis , Urinary Bladder , Animals , Humans , Urinary Bladder/pathology , Pressure , Phantoms, Imaging , Silicones
4.
Front Robot AI ; 8: 672934, 2021.
Article in English | MEDLINE | ID: mdl-34041277

ABSTRACT

Phase-change material-elastomer composite (PCMEC) actuators are composed of a soft elastomer matrix embedding a phase-change fluid, typically ethanol, in microbubbles. When increasing the temperature, the phase change in each bubble induces a macroscopic expansion of the matrix. This class of actuators is promising for soft robotic applications because of their high energy density and actuation strain, and their low cost and easy manufacturing. However, several limitations must be addressed, such as the high actuation temperature and slow actuation speed. Moreover, the lack of a consistent design approach limits the possibility to build PCMEC-based soft robots able to achieve complex tasks. In this work, a new approach to manufacture PCMEC actuators with different fluid-elastomer combinations without altering the quality of the samples is proposed. The influence of the phase-change fluid and the elastomer on free elongation and bending is investigated. We demonstrate that choosing an appropriate fluid increases the actuation strain and speed, and decreases the actuation temperature compared with ethanol, allowing PCMECs to be used in close contact with the human body. Similarly, by using different elastomer materials, the actuator stiffness can be modified, and the experimental results showed that the curvature is roughly proportional to the inverse of Young's modulus of the pure matrix. To demonstrate the potential of the optimized PCMECs, a kirigami-inspired voxel-based design approach is proposed. PCMEC cubes are molded and reinforced externally by paper. Cuts in the paper induce anisotropy into the structure. Elementary voxels deforming according to the basic kinematics (bending, torsion, elongation, compression and shear) are presented. The combination of these voxels into modular and reconfigurable structures could open new possibilities towards the design of flexible robots able to perform complex tasks.

SELECTION OF CITATIONS
SEARCH DETAIL
...