Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 7(2): 711-726, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38265040

ABSTRACT

Graphene is a prospective candidate for various biomedical applications, including drug transporters, bioimaging agents, and scaffolds for tissue engineering, thanks to its superior electrical conductivity and biocompatibility. The clinical issue of nerve regeneration and rehabilitation still has a major influence on people's lives. Nanomaterials based on graphene have been exploited extensively to promote nerve cell differentiation and proliferation. Their high electrical conductivity and mechanical robustness make them appropriate for nerve tissue engineering. Combining graphene with other substances, such as biopolymers, may transmit biochemical signals that support brain cell division, proliferation, and regeneration. The utilization of nanocomposites based on graphene in neurogenesis and neuritogenesis is the primary emphasis of this review. Here are some examples of the many synthetic strategies used. For neuritogenesis and neurogenesis, it has also been explored to combine electrical stimulation with graphene-based materials.


Subject(s)
Graphite , Nanocomposites , Humans , Graphite/chemistry , Tissue Engineering/methods , Neurogenesis , Nanocomposites/chemistry
2.
ACS Appl Bio Mater ; 6(10): 4208-4216, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37728547

ABSTRACT

Over the past few decades, zinc oxide nanoparticles have also proven to be essential to a variety of scientific research sectors, including antimicrobial therapy, tissue engineering, bioimaging, biosensors, drug delivery, gene delivery, and bioimaging. There is an urgent need to establish and develop unique alternative treatment modalities to treat neurodegenerative disorders due to the shortcomings of the existing drugs. As a possible therapy for brain diseases and disorders, the ability of the nanoparticles to cross the blood-brain barrier (BBB) as well as their reduced toxicity, solubility, and biodegradability has lately attracted attention. Scientists are quietly turning their attention to develop green synthesis of nanoparticles as an alternative to the physical and chemical techniques of producing the same. Existing literature has emphasized the use of ZnO for the potential treatment of cerebral ischemia and its neuroprotective properties. This work discusses the potential of ZnO prepared using Gynura cusimba extract and its nanocomposites with graphene quantum dots (GQDs) and its nitrogen doped variant, N-GQDs as neurotrophic agents, in accordance with our previous report on the use of GQDs and N-GQDs as neurotrophic agents. Pristine ZnO nanoparticles as well as composites were duly characterized by using several techniques to confirm the formation of the nanocomposites. Biological evaluation using the neurite outgrowth assay following the cell viability assay revealed that incorporation of GQDs and N-GQDs enhanced the neurite length in comparison to that of pristine ZnO with the nanocomposites of N-GQDs showing comparatively better results, corroborated by the real-time PCR studies as well.

3.
ACS Appl Bio Mater ; 6(6): 2237-2247, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37167607

ABSTRACT

Over time, developments in nano-biomedical research have led to the creation of a number of systems to cure serious illnesses. Tandem use of nano-theragnostics such as diagnostic and therapeutic approaches tailored to the individual disease treatment is crucial for further development in the field of biomedical advancements. Graphene has garnered attention in the recent times as a potential nanomaterial for tissue engineering and regenerative medicines owing to its biocompatibility among the several other unique properties it possesses. The zero-dimensional graphene quantum dots (GQDs) and their nitrogen-doped variant, nitrogen-doped GQDs (N-GQDs), have good biocompatibility, and optical and physicochemical properties. GQDs have been extensively researched owing to several factors such as their size, surface charge, and interactions with other molecules found in biological media. This work briefly elucidates the potential of electroactive GQDs as well as N-GQDs as neurotrophic agents. In vitro investigations employing the N2A cell line were used to evaluate the effectiveness of GQDs and N-GQDs as neurotrophic agents, wherein basic investigations such as SRB assay and neurite outgrowth assay were performed. The results inferred from immunohistochemistry followed by confocal imaging studies as well as quantitative real-time PCR (qPCR) studies corroborated those obtained from neurite outgrowth assay. We have also conducted a preliminary investigation of the pattern of gene expression for neurotrophic and gliotrophic growth factors using ex vivo neuronal and mixed glial cultures taken from the brains of postnatal day 2 mice pups. Overall, the studies indicated that GQDs and N-GQDs hold prospect as a framework for further development of neuroactive compounds for relevant central nervous system (CNS) purposes.


Subject(s)
Graphite , Nanostructures , Quantum Dots , Mice , Animals , Graphite/pharmacology , Graphite/chemistry , Quantum Dots/chemistry , Nitrogen/chemistry
4.
Phys Chem Chem Phys ; 25(11): 7611-7628, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36877126

ABSTRACT

Significant contributions have been made towards the development of flexible energy storage devices to meet the ever-growing energy demand. Flexibility, mechanical stability, and electrical conductivity are three critical qualities that distinguish conducting polymers from other materials. Polyaniline (PANI) has drawn considerable attention among the various conducting polymers for use in flexible supercapacitors. PANI offers several desirable properties including high porosity, a large surface area, and high conductivity. Despite its merits, it also suffers from poor cyclic stability, low mechanical strength, and notable discrepancy between theoretical and actual capacitance. These shortcomings have been addressed by creating composites of PANI with structurally sturdy elements such as graphene, carbon nanotubes (CNTs), metal-organic framework (MOFs), MXenes, etc., thus enhancing the performance of supercapacitors. This review outlines the several schemes adopted to prepare diverse binary and ternary composites of PANI as the electrode material for flexible supercapacitors and the significant impact of composite formation on the flexibility and electrochemical performance of the fabricated pliable supercapacitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...