Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 15: 212, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26315624

ABSTRACT

BACKGROUND: Krishna Tulsi, a member of Lamiaceae family, is a herb well known for its spiritual, religious and medicinal importance in India. The common name of this plant is 'Tulsi' (or 'Tulasi' or 'Thulasi') and is considered sacred by Hindus. We present the draft genome of Ocimum tenuiflurum L (subtype Krishna Tulsi) in this report. The paired-end and mate-pair sequence libraries were generated for the whole genome sequenced with the Illumina Hiseq 1000, resulting in an assembled genome of 374 Mb, with a genome coverage of 61 % (612 Mb estimated genome size). We have also studied transcriptomes (RNA-Seq) of two subtypes of O. tenuiflorum, Krishna and Rama Tulsi and report the relative expression of genes in both the varieties. RESULTS: The pathways leading to the production of medicinally-important specialized metabolites have been studied in detail, in relation to similar pathways in Arabidopsis thaliana and other plants. Expression levels of anthocyanin biosynthesis-related genes in leaf samples of Krishna Tulsi were observed to be relatively high, explaining the purple colouration of Krishna Tulsi leaves. The expression of six important genes identified from genome data were validated by performing q-RT-PCR in different tissues of five different species, which shows the high extent of urosolic acid-producing genes in young leaves of the Rama subtype. In addition, the presence of eugenol and ursolic acid, implied as potential drugs in the cure of many diseases including cancer was confirmed using mass spectrometry. CONCLUSIONS: The availability of the whole genome of O.tenuiflorum and our sequence analysis suggests that small amino acid changes at the functional sites of genes involved in metabolite synthesis pathways confer special medicinal properties to this herb.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Ocimum/genetics , India , Ocimum/metabolism , Plant Leaves/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism
2.
Database (Oxford) ; 2015: bav060, 2015.
Article in English | MEDLINE | ID: mdl-26130660

ABSTRACT

We have developed an integrated database for Mycobacterium tuberculosis H37Rv (Mtb) that collates information on protein sequences, domain assignments, functional annotation and 3D structural information along with protein-protein and protein-small molecule interactions. SInCRe (Structural Interactome Computational Resource) is developed out of CamBan (Cambridge and Bangalore) collaboration. The motivation for development of this database is to provide an integrated platform to allow easily access and interpretation of data and results obtained by all the groups in CamBan in the field of Mtb informatics. In-house algorithms and databases developed independently by various academic groups in CamBan are used to generate Mtb-specific datasets and are integrated in this database to provide a structural dimension to studies on tuberculosis. The SInCRe database readily provides information on identification of functional domains, genome-scale modelling of structures of Mtb proteins and characterization of the small-molecule binding sites within Mtb. The resource also provides structure-based function annotation, information on small-molecule binders including FDA (Food and Drug Administration)-approved drugs, protein-protein interactions (PPIs) and natural compounds that bind to pathogen proteins potentially and result in weakening or elimination of host-pathogen protein-protein interactions. Together they provide prerequisites for identification of off-target binding.


Subject(s)
Algorithms , Bacterial Proteins , Computer Simulation , Databases, Protein , Mycobacterium tuberculosis , Antitubercular Agents/chemistry , Antitubercular Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Protein Structure, Tertiary
3.
Protein Pept Lett ; 22(7): 618-27, 2015.
Article in English | MEDLINE | ID: mdl-25961822

ABSTRACT

Peptide-mediated immunity against pathogens in plants can provide information on protein-peptide interactions and drug discovery in general. The molecular structure of AtPep1, a 23-amino acid signaling peptide isolated from Arabidopsis thaliana leaves and implicated in innate immunity, has evaded structural determination by biophysical methods. The details of molecular interaction of AtPep1 peptide with its receptor (PEPR1), a 170 kDa leucine-rich repeat (LRR) kinase is also unknown. We report a computational approach to the modeling AtPep1 by conformational sampling and its interaction with the receptor PEPR1. Molecular dynamics simulations were employed to sample and cluster energetically favorable conformations of AtPep1 and modeling of PEPR1 through homology. Docking of AtPep1 to PEPR1 and filtering of the biologically relevant poses were facilitated by the computational Ala-scanning mutations and binding energy analysis of the peptide-protein complex. This study provides the first independent in silico validation of the Structure-Activity- Relationship studies carried out on the AtPep1 and provides a molecular mechanism of the peptide-protein complex system.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Receptors, Cell Surface/metabolism , Trans-Activators/metabolism , Amino Acid Sequence , Amino Acid Substitution , Arabidopsis/immunology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Molecular Docking Simulation , Molecular Sequence Data , Mutation , Plant Immunity , Protein Aggregates , Protein Binding , Protein Stability , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Cell Surface/chemistry , Trans-Activators/chemistry , Trans-Activators/genetics
4.
Tuberculosis (Edinb) ; 95(1): 14-25, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25467293

ABSTRACT

The availability of the genome sequence of Mycobacterium tuberculosis H37Rv has encouraged determination of large numbers of protein structures and detailed definition of the biological information encoded therein; yet, the functions of many proteins in M. tuberculosis remain unknown. The emergence of multidrug resistant strains makes it a priority to exploit recent advances in homology recognition and structure prediction to re-analyse its gene products. Here we report the structural and functional characterization of gene products encoded in the M. tuberculosis genome, with the help of sensitive profile-based remote homology search and fold recognition algorithms resulting in an enhanced annotation of the proteome where 95% of the M. tuberculosis proteins were identified wholly or partly with information on structure or function. New information includes association of 244 proteins with 205 domain families and a separate set of new association of folds to 64 proteins. Extending structural information across uncharacterized protein families represented in the M. tuberculosis proteome, by determining superfamily relationships between families of known and unknown structures, has contributed to an enhancement in the knowledge of structural content. In retrospect, such superfamily relationships have facilitated recognition of probable structure and/or function for several uncharacterized protein families, eventually aiding recognition of probable functions for homologous proteins corresponding to such families. Gene products unique to mycobacteria for which no functions could be identified are 183. Of these 18 were determined to be M. tuberculosis specific. Such pathogen-specific proteins are speculated to harbour virulence factors required for pathogenesis. A re-annotated proteome of M. tuberculosis, with greater completeness of annotated proteins and domain assigned regions, provides a valuable basis for experimental endeavours designed to obtain a better understanding of pathogenesis and to accelerate the process of drug target discovery.


Subject(s)
Hydrolases/physiology , Mycobacterium tuberculosis/physiology , Proteome/physiology , Hydrolases/chemistry , Hydrolases/genetics , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/genetics , Protein Structure, Tertiary , Proteome/chemistry , Proteome/genetics , Sequence Analysis, Protein/methods , Structural Homology, Protein
5.
Org Biomol Chem ; 11(25): 4220-31, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23680821

ABSTRACT

The crystal structures of several designed peptide hairpins have been determined in order to establish features of molecular conformations and modes of aggregation in the crystals. Hairpin formation has been induced using a centrally positioned (D)Pro-Xxx segment (Xxx = (L)Pro, Aib, Ac6c, Ala; Aib = α-aminoisobutyric acid; Ac6c = 1-aminocyclohexane-1-carboxylic acid). Structures of the peptides Boc-Leu-Phe-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (1), Boc-Leu-Tyr-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (2, polymorphic forms labeled as 2a and 2b), Boc-Leu-Val-Val-(D)Pro-(L)Pro-Leu-Val-Val-OMe (3), Boc-Leu-Phe-Val-(D)Pro-Aib-Leu-Phe-Val-OMe (4, polymorphic forms labeled as 4a and 4b), Boc-Leu-Phe-Val-(D)Pro-Ac6c-Leu-Phe-Val-OMe (5) and Boc-Leu-Phe-Val-(D)Pro-Ala-Leu-Phe-Val-OMe (6) are described. All the octapeptides adopt type II' ß-turn nucleated hairpins, stabilized by three or four cross-strand intramolecular hydrogen bonds. The angle of twist between the two antiparallel strands lies in the range of -9.8° to -26.7°. A detailed analysis of packing motifs in peptide hairpin crystals is presented, revealing three broad modes of association: parallel packing, antiparallel packing and orthogonal packing. An attempt to correlate aggregation modes in solution with observed packing motifs in crystals has been made by indexing of crystal faces in the case of three of the peptide hairpins. The observed modes of hairpin aggregation may be of relevance in modeling multiple modes of association, which may provide insights into the structure of insoluble polypeptide aggregates.


Subject(s)
Peptides/chemistry , Crystallization , Crystallography, X-Ray , Models, Molecular , Peptides/chemical synthesis , Protein Structure, Secondary
6.
Proteins ; 80(5): 1259-63, 2012 May.
Article in English | MEDLINE | ID: mdl-22383276

ABSTRACT

The ST Pinch is a 12-membered hydrogen-bonded motif (Ser/Thr-Xaa-Ser/Thr) involving the side chain oxygen atoms of two Ser/Thr residues. We identified the ST Pinch in 104 proteins in a database containing high-resolution crystal structures. Conformational analysis of the ST Pinch in these proteins points to specific preferences for the Xaa residue and a high propensity of this residue to adopt positive φ angles. Our results suggest that this motif serves as a linker of secondary structural elements within proteins and is a new addition to the existing list of short hydrogen bond-stabilized motifs in proteins.


Subject(s)
Amino Acids/chemistry , Peptides/chemistry , Amino Acid Motifs , Databases, Protein , Hydrogen Bonding , Models, Molecular , Protein Conformation
7.
J Am Chem Soc ; 132(3): 1075-86, 2010 Jan 27.
Article in English | MEDLINE | ID: mdl-20043694

ABSTRACT

Peptide nanotubes with filled and empty pores and close-packed structures are formed in closely related pentapeptides. Enantiomorphic sequences, Boc-(D)Pro-Aib-Xxx-Aib-Val-OMe (Xxx = Leu, 1; Val, 2; Ala, 3; Phe, 4) and Boc-Pro-Aib-(D)Xxx-Aib-(D)Val-OMe ((D)Xxx = (D)Leu, 5; (D)Val, 6; (D)Ala, 7; (D)Phe, 8), yield molecular structures with a very similar backbone conformation but varied packing patterns in crystals. Peptides 1, 2, 5, and 6 show tubular structures with the molecules self-assembling along the crystallographic six-fold axis (c-axis) and revealing a honeycomb arrangement laterally (ab plane). Two forms of entrapped water wires have been characterized in 2: 2a with d(O...O) = 2.6 A and 2b with d(O...O) = 3.5 A. The latter is observed in 6 (6a) also. A polymorphic form of 6 (6b), grown from a solution of methanol-water, was observed to crystallize in a monoclinic system as a close-packed structure. Single-file water wire arrangements encapsulated inside hydrophobic channels formed by peptide nanotubes could be established by modeling the published structures in the cases of a cyclic peptide and a dipeptide. In all the entrapped water wires, each water molecule is involved in a hydrogen bond with a previous and succeeding water molecule. The O-H group of the water not involved in any hydrogen bond does not seem to be involved in an energetically significant interaction with the nanotube interior, a general feature of the one-dimensional water wires encapsulated in hydrophobic environments. Water wires in hydrophobic channels are contrasted with the single-file arrangements in amphipathic channels formed by aquaporins.


Subject(s)
Nanotubes/chemistry , Peptides/chemistry , Water/chemistry , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Conformation
8.
J Am Chem Soc ; 131(42): 15130-2, 2009 Oct 28.
Article in English | MEDLINE | ID: mdl-19580271

ABSTRACT

The crystallographic observation of a hydrophobic, empty channel (diameter approximately 5.2 A) in the peptide Boc-(D)Pro-Aib-Leu-Aib-Val-OMe, prompted the investigation of the analog Boc-(D)Pro-Aib-Val-Aib-Val-OMe in which the side chain at position 3 was shortened, resulting in the structure of a channel (diameter approximately 7.5 A) containing a one-dimensional wire of water molecules. Crystallization in the space group P6(5) facilitates formation of a pore lined entirely by hydrocarbon side chains. Two forms of the entrapped water wires, with O...O separations of 3.5 and 2.6 A, are discussed. A lone hydrogen bond between the adjacent pairs of water molecules in the wire, with no strong interactions between the second water hydrogen and the hydrophobic walls of the channel, is a feature of the one-dimensional array. The structure provides the first crystallographic characterization of a water wire in a hydrophobic channel with implications in water and proton transport in membranes and carbon nanotubes.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Peptides/chemistry , Water/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...