Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cancers (Basel) ; 15(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36765781

ABSTRACT

Advanced image analysis, including radiomics, has recently acquired recognition as a source of biomarkers, although there are some technical and methodological challenges to face for its application in the clinic. Among others, proper phenotyping of metastatic or systemic disease where multiple lesions coexist is an issue, since each lesion contributes to characterization of the disease. Therefore, the radiomic profile of each lesion should be modeled into a more complex architecture able to reproduce each "unit" (lesion) as a part of the "entire" (patient). This work aimed to characterize intra-tumor heterogeneity underpinning metastatic prostate cancer using an exhaustive innovative approach which consist of a i) feature transformation method to build an agnostic (i.e., irrespective of pre-existence knowledge, experience, and expertise) radiomic profile of lesions extracted from [18F]FMCH PET/CT, ii) qualitative assessment of intra-tumor heterogeneity of patients, iii) quantitative representation of the intra-tumor heterogeneity of patients in terms of the relationship between their lesions' profiles, to be associated with prognostic factors. We confirmed that metastatic prostate cancer patients encompassed lesions with different radiomic profiles that exhibited intra-tumor radiomic heterogeneity and that the presence of many radiomic profiles within the same patient impacted the outcome.

3.
Sci Rep ; 12(1): 19607, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36380083

ABSTRACT

Personalized medicine is the future of medical practice. In oncology, tumor heterogeneity assessment represents a pivotal step for effective treatment planning and prognosis prediction. Despite new procedures for DNA sequencing and analysis, non-invasive methods for tumor characterization are needed to impact on daily routine. On purpose, imaging texture analysis is rapidly scaling, holding the promise to surrogate histopathological assessment of tumor lesions. In this work, we propose a tree-based representation strategy for describing intra-tumor heterogeneity of patients affected by metastatic cancer. We leverage radiomics information extracted from PET/CT imaging and we provide an exhaustive and easily readable summary of the disease spreading. We exploit this novel patient representation to perform cancer subtyping according to hierarchical clustering technique. To this purpose, a new heterogeneity-based distance between trees is defined and applied to a case study of prostate cancer. Clusters interpretation is explored in terms of concordance with severity status, tumor burden and biological characteristics. Results are promising, as the proposed method outperforms current literature approaches. Ultimately, the proposed method draws a general analysis framework that would allow to extract knowledge from daily acquired imaging data of patients and provide insights for effective treatment planning.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Prognosis , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Tumor Burden
4.
EJNMMI Res ; 11(1): 119, 2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34837532

ABSTRACT

BACKGROUND: The role of image-derived biomarkers in recurrent oligometastatic Prostate Cancer (PCa) is unexplored. This paper aimed to evaluate [18F]FMCH PET/CT radiomic analysis in patients with recurrent PCa after primary radical therapy. Specifically, we tested intra-patient lesions similarity in oligometastatic and plurimetastatic PCa, comparing the two most used definitions of oligometastatic disease. METHODS: PCa patients eligible for [18F]FMCH PET/CT presenting biochemical failure after first-line curative treatments were invited to participate in this prospective observational trial. PET/CT images of 92 patients were visually and quantitatively analyzed. Each patient was classified as oligometastatic or plurimetastatic according to the total number of detected lesions (up to 3 and up to 5 or > 3 and > 5, respectively). Univariate and intra-patient lesions' similarity analysis were performed. RESULTS: [18F]FMCH PET/CT identified 370 lesions, anatomically classified as regional lymph nodes and distant metastases. Thirty-eight and 54 patients were designed oligometastatic and plurimetastatic, respectively, using a 3-lesion threshold. The number of oligometastic scaled up to 60 patients (thus 32 plurimetastatic patients) with a 5-lesion threshold. Similarity analysis showed high lesions' heterogeneity. Grouping patients according to the number of metastases, patients with oligometastatic PCa defined with a 5-lesion threshold presented lesions heterogeneity comparable to plurimetastic patients. Lesions within patients having a limited tumor burden as defined by three lesions were characterized by less heterogeneity. CONCLUSIONS: We found a comparable heterogeneity between patients with up to five lesions and plurimetastic patients, while patients with up to three lesions were less heterogeneous than plurimetastatic patients, featuring different cells phenotypes in the two groups. Our results supported the use of a 3-lesion threshold to define oligometastatic PCa.

SELECTION OF CITATIONS
SEARCH DETAIL