Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nat Biotechnol ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191664

ABSTRACT

Prime editing enables precise installation of genomic substitutions, insertions and deletions in living systems. Efficient in vitro and in vivo delivery of prime editing components, however, remains a challenge. Here we report prime editor engineered virus-like particles (PE-eVLPs) that deliver prime editor proteins, prime editing guide RNAs and nicking single guide RNAs as transient ribonucleoprotein complexes. We systematically engineered v3 and v3b PE-eVLPs with 65- to 170-fold higher editing efficiency in human cells compared to a PE-eVLP construct based on our previously reported base editor eVLP architecture. In two mouse models of genetic blindness, single injections of v3 PE-eVLPs resulted in therapeutically relevant levels of prime editing in the retina, protein expression restoration and partial visual function rescue. Optimized PE-eVLPs support transient in vivo delivery of prime editor ribonucleoproteins, enhancing the potential safety of prime editing by reducing off-target editing and obviating the possibility of oncogenic transgene integration.

2.
Cell ; 186(18): 3983-4002.e26, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37657419

ABSTRACT

Prime editing enables a wide variety of precise genome edits in living cells. Here we use protein evolution and engineering to generate prime editors with reduced size and improved efficiency. Using phage-assisted evolution, we improved editing efficiencies of compact reverse transcriptases by up to 22-fold and generated prime editors that are 516-810 base pairs smaller than the current-generation editor PEmax. We discovered that different reverse transcriptases specialize in different types of edits and used this insight to generate reverse transcriptases that outperform PEmax and PEmaxΔRNaseH, the truncated editor used in dual-AAV delivery systems. Finally, we generated Cas9 domains that improve prime editing. These resulting editors (PE6a-g) enhance therapeutically relevant editing in patient-derived fibroblasts and primary human T-cells. PE6 variants also enable longer insertions to be installed in vivo following dual-AAV delivery, achieving 40% loxP insertion in the cortex of the murine brain, a 24-fold improvement compared to previous state-of-the-art prime editors.


Subject(s)
Bacteriophages , Protein Engineering , Humans , Animals , Mice , Bacteriophages/genetics , Brain , Cerebral Cortex , DNA-Directed RNA Polymerases
3.
Science ; 380(6642): eadg6518, 2023 04 21.
Article in English | MEDLINE | ID: mdl-36996170

ABSTRACT

Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, arises from survival motor neuron (SMN) protein insufficiency resulting from SMN1 loss. Approved therapies circumvent endogenous SMN regulation and require repeated dosing or may wane. We describe genome editing of SMN2, an insufficient copy of SMN1 harboring a C6>T mutation, to permanently restore SMN protein levels and rescue SMA phenotypes. We used nucleases or base editors to modify five SMN2 regulatory regions. Base editing converted SMN2 T6>C, restoring SMN protein levels to wild type. Adeno-associated virus serotype 9-mediated base editor delivery in Δ7SMA mice yielded 87% average T6>C conversion, improved motor function, and extended average life span, which was enhanced by one-time base editor and nusinersen coadministration (111 versus 17 days untreated). These findings demonstrate the potential of a one-time base editing treatment for SMA.


Subject(s)
Gene Editing , Muscular Atrophy, Spinal , Survival of Motor Neuron 1 Protein , Survival of Motor Neuron 2 Protein , Animals , Mice , Fibroblasts/metabolism , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics
4.
Nat Med ; 29(2): 412-421, 2023 02.
Article in English | MEDLINE | ID: mdl-36797483

ABSTRACT

Dominant missense pathogenic variants in cardiac myosin heavy chain cause hypertrophic cardiomyopathy (HCM), a currently incurable disorder that increases risk for stroke, heart failure and sudden cardiac death. In this study, we assessed two different genetic therapies-an adenine base editor (ABE8e) and a potent Cas9 nuclease delivered by AAV9-to prevent disease in mice carrying the heterozygous HCM pathogenic variant myosin R403Q. One dose of dual-AAV9 vectors, each carrying one half of RNA-guided ABE8e, corrected the pathogenic variant in ≥70% of ventricular cardiomyocytes and maintained durable, normal cardiac structure and function. An additional dose provided more editing in the atria but also increased bystander editing. AAV9 delivery of RNA-guided Cas9 nuclease effectively inactivated the pathogenic allele, albeit with dose-dependent toxicities, necessitating a narrow therapeutic window to maintain health. These preclinical studies demonstrate considerable potential for single-dose genetic therapies to correct or silence pathogenic variants and prevent the development of HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Gene Editing , Animals , Mice , Mutation, Missense , Myocytes, Cardiac , RNA
5.
Nat Biotechnol ; 41(5): 673-685, 2023 05.
Article in English | MEDLINE | ID: mdl-36357719

ABSTRACT

Cytosine base editors (CBEs) are larger and can suffer from higher off-target activity or lower on-target editing efficiency than current adenine base editors (ABEs). To develop a CBE that retains the small size, low off-target activity and high on-target activity of current ABEs, we evolved the highly active deoxyadenosine deaminase TadA-8e to perform cytidine deamination using phage-assisted continuous evolution. Evolved TadA cytidine deaminases contain mutations at DNA-binding residues that alter enzyme selectivity to strongly favor deoxycytidine over deoxyadenosine deamination. Compared to commonly used CBEs, TadA-derived cytosine base editors (TadCBEs) offer similar or higher on-target activity, smaller size and substantially lower Cas-independent DNA and RNA off-target editing activity. We also identified a TadA dual base editor (TadDE) that performs equally efficient cytosine and adenine base editing. TadCBEs support single or multiplexed base editing at therapeutically relevant genomic loci in primary human T cells and primary human hematopoietic stem and progenitor cells. TadCBEs expand the utility of CBEs for precision gene editing.


Subject(s)
CRISPR-Cas Systems , Cytosine , Humans , Adenine , Gene Editing , DNA/genetics , Deoxyadenosines , Cytidine/genetics
6.
Proc Natl Acad Sci U S A ; 119(39): e2210104119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122230

ABSTRACT

CRISPR-Cas-based genome editing technologies could, in principle, be used to treat a wide variety of inherited diseases, including genetic disorders of vision. Programmable CRISPR-Cas nucleases are effective tools for gene disruption, but they are poorly suited for precisely correcting pathogenic mutations in most therapeutic settings. Recently developed precision genome editing agents, including base editors and prime editors, have enabled precise gene correction and disease rescue in multiple preclinical models of genetic disorders. Additionally, new delivery technologies that transiently deliver precision genome editing agents in vivo offer minimized off-target editing and improved safety profiles. These improvements to precision genome editing and delivery technologies are expected to revolutionize the treatment of genetic disorders of vision and other diseases. In this Perspective, we describe current preclinical and clinical genome editing approaches for treating inherited retinal degenerative diseases, and we discuss important considerations that should be addressed as these approaches are translated into clinical practice.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Vision Disorders , CRISPR-Cas Systems/genetics , Endonucleases/genetics , Mutation , Vision Disorders/genetics , Vision Disorders/therapy
8.
Nat Biomed Eng ; 6(11): 1272-1283, 2022 11.
Article in English | MEDLINE | ID: mdl-35902773

ABSTRACT

The viral delivery of base editors has been complicated by their size and by the limited packaging capacity of adeno-associated viruses (AAVs). Typically, dual-AAV approaches based on trans-splicing inteins have been used. Here we show that, compared with dual-AAV systems, AAVs with size-optimized genomes incorporating compact adenine base editors (ABEs) enable efficient editing in mice at similar or lower doses. Single-AAV-encoded ABEs retro-orbitally injected in mice led to editing efficiencies in liver (66%), heart (33%) and muscle (22%) tissues that were up to 2.5-fold those of dual-AAV ABE8e, and to a 93% knockdown (on average) of human PCSK9 and of mouse Pcsk9 and Angptl3 in circulation, concomitant with substantial reductions of plasma cholesterol and triglycerides. Moreover, three size-minimized ABE8e variants, each compatible with single-AAV delivery, collectively offer compatibility with protospacer-adjacent motifs for editing approximately 82% of the adenines in the human genome. ABEs encoded within single AAVs will facilitate research and therapeutic applications of base editing by simplifying AAV production and characterization, and by reducing the dose required for the desired level of editing.


Subject(s)
Dependovirus , Proprotein Convertase 9 , Animals , Humans , Mice , Dependovirus/genetics , Proprotein Convertase 9/genetics , Gene Editing , Adenine , Angiopoietin-like Proteins/genetics
9.
Cell ; 185(15): 2806-2827, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35798006

ABSTRACT

In vivo gene editing therapies offer the potential to treat the root causes of many genetic diseases. Realizing the promise of therapeutic in vivo gene editing requires the ability to safely and efficiently deliver gene editing agents to relevant organs and tissues in vivo. Here, we review current delivery technologies that have been used to enable therapeutic in vivo gene editing, including viral vectors, lipid nanoparticles, and virus-like particles. Since no single delivery modality is likely to be appropriate for every possible application, we compare the benefits and drawbacks of each method and highlight opportunities for future improvements.


Subject(s)
Gene Editing , Nanoparticles , CRISPR-Cas Systems/genetics , Gene Editing/methods , Genetic Therapy/methods , Genetic Vectors , Liposomes
10.
Nat Biotechnol ; 40(9): 1378-1387, 2022 09.
Article in English | MEDLINE | ID: mdl-35379961

ABSTRACT

The all-protein cytosine base editor DdCBE uses TALE proteins and a double-stranded DNA-specific cytidine deaminase (DddA) to mediate targeted C•G-to-T•A editing. To improve editing efficiency and overcome the strict TC sequence-context constraint of DddA, we used phage-assisted non-continuous and continuous evolution to evolve DddA variants with improved activity and expanded targeting scope. Compared to canonical DdCBEs, base editors with evolved DddA6 improved mitochondrial DNA (mtDNA) editing efficiencies at TC by 3.3-fold on average. DdCBEs containing evolved DddA11 offered a broadened HC (H = A, C or T) sequence compatibility for both mitochondrial and nuclear base editing, increasing average editing efficiencies at AC and CC targets from less than 10% for canonical DdCBE to 15-30% and up to 50% in cell populations sorted to express both halves of DdCBE. We used these evolved DdCBEs to efficiently install disease-associated mtDNA mutations in human cells at non-TC target sites. DddA6 and DddA11 substantially increase the effectiveness and applicability of all-protein base editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Cytidine Deaminase/genetics , DNA, Mitochondrial/genetics , Humans , Mitochondria/genetics , Mitochondria/metabolism
11.
Nat Commun ; 13(1): 1830, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35383196

ABSTRACT

Leber congenital amaurosis (LCA) is the most common cause of inherited retinal degeneration in children. LCA patients with RPE65 mutations show accelerated cone photoreceptor dysfunction and death, resulting in early visual impairment. It is therefore crucial to develop a robust therapy that not only compensates for lost RPE65 function but also protects photoreceptors from further degeneration. Here, we show that in vivo correction of an Rpe65 mutation by adenine base editor (ABE) prolongs the survival of cones in an LCA mouse model. In vitro screening of ABEs and sgRNAs enables the identification of a variant that enhances in vivo correction efficiency. Subretinal delivery of ABE and sgRNA corrects up to 40% of Rpe65 transcripts, restores cone-mediated visual function, and preserves cones in LCA mice. Single-cell RNA-seq reveals upregulation of genes associated with cone phototransduction and survival. Our findings demonstrate base editing as a potential gene therapy that confers long-lasting retinal protection.


Subject(s)
Leber Congenital Amaurosis , Retinal Degeneration , cis-trans-Isomerases , Animals , Eye Proteins/genetics , Humans , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/therapy , Mice , Mice, Knockout , Retinal Cone Photoreceptor Cells/physiology , Retinal Degeneration/complications , Retinal Degeneration/genetics , Retinal Degeneration/therapy , cis-trans-Isomerases/genetics
12.
Cell ; 185(2): 250-265.e16, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35021064

ABSTRACT

Methods to deliver gene editing agents in vivo as ribonucleoproteins could offer safety advantages over nucleic acid delivery approaches. We report the development and application of engineered DNA-free virus-like particles (eVLPs) that efficiently package and deliver base editor or Cas9 ribonucleoproteins. By engineering VLPs to overcome cargo packaging, release, and localization bottlenecks, we developed fourth-generation eVLPs that mediate efficient base editing in several primary mouse and human cell types. Using different glycoproteins in eVLPs alters their cellular tropism. Single injections of eVLPs into mice support therapeutic levels of base editing in multiple tissues, reducing serum Pcsk9 levels 78% following 63% liver editing, and partially restoring visual function in a mouse model of genetic blindness. In vitro and in vivo off-target editing from eVLPs was virtually undetected, an improvement over AAV or plasmid delivery. These results establish eVLPs as promising vehicles for therapeutic macromolecule delivery that combine key advantages of both viral and nonviral delivery.


Subject(s)
Drug Delivery Systems , Genetic Engineering , Proteins/therapeutic use , Virion/genetics , Animals , Base Sequence , Blindness/genetics , Blindness/therapy , Brain/metabolism , DNA/metabolism , Disease Models, Animal , Fibroblasts/metabolism , Gene Editing , HEK293 Cells , Humans , Liver/pathology , Mice , Mice, Inbred C57BL , Proprotein Convertase 9/metabolism , Retinal Pigment Epithelium/pathology , Retroviridae , Virion/ultrastructure , Vision, Ocular
13.
Nat Biotechnol ; 40(5): 731-740, 2022 05.
Article in English | MEDLINE | ID: mdl-34887556

ABSTRACT

The targeted deletion, replacement, integration or inversion of genomic sequences could be used to study or treat human genetic diseases, but existing methods typically require double-strand DNA breaks (DSBs) that lead to undesired consequences, including uncontrolled indel mixtures and chromosomal abnormalities. Here we describe twin prime editing (twinPE), a DSB-independent method that uses a prime editor protein and two prime editing guide RNAs (pegRNAs) for the programmable replacement or excision of DNA sequences at endogenous human genomic sites. The two pegRNAs template the synthesis of complementary DNA flaps on opposing strands of genomic DNA, which replace the endogenous DNA sequence between the prime-editor-induced nick sites. When combined with a site-specific serine recombinase, twinPE enabled targeted integration of gene-sized DNA plasmids (>5,000 bp) and targeted sequence inversions of 40 kb in human cells. TwinPE expands the capabilities of precision gene editing and might synergize with other tools for the correction or complementation of large or complex human pathogenic alleles.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Base Sequence , Chromosome Inversion , DNA/genetics , Gene Editing/methods , Humans , RNA, Guide, Kinetoplastida/genetics
15.
Nat Commun ; 12(1): 5959, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645844

ABSTRACT

The directed evolution of antibodies has yielded important research tools and human therapeutics. The dependence of many antibodies on disulfide bonds for stability has limited the application of continuous evolution technologies to antibodies and other disulfide-containing proteins. Here we describe periplasmic phage-assisted continuous evolution (pPACE), a system for continuous evolution of protein-protein interactions in the disulfide-compatible environment of the E. coli periplasm. We first apply pPACE to rapidly evolve novel noncovalent and covalent interactions between subunits of homodimeric YibK protein and to correct a binding-defective mutant of the anti-GCN4 Ω-graft antibody. We develop an intein-mediated system to select for soluble periplasmic expression in pPACE, leading to an eight-fold increase in soluble expression of the Ω-graft antibody. Finally, we evolve disulfide-containing trastuzumab antibody variants with improved binding to a Her2-like peptide and improved soluble expression. Together, these results demonstrate that pPACE can rapidly optimize proteins containing disulfide bonds, broadening the applicability of continuous evolution.


Subject(s)
Directed Molecular Evolution/methods , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Methyltransferases/genetics , Periplasm/genetics , Protein Disulfide-Isomerases/genetics , Trastuzumab/genetics , Binding Sites , Cloning, Molecular , Coliphages/genetics , Coliphages/metabolism , Disulfides/chemistry , Disulfides/metabolism , Escherichia coli/metabolism , Escherichia coli/virology , Escherichia coli Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Inteins/genetics , Methyltransferases/metabolism , Models, Molecular , Periplasm/metabolism , Periplasm/virology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Disulfide-Isomerases/metabolism , Protein Interaction Domains and Motifs , Protein Splicing , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Trastuzumab/chemistry , Trastuzumab/metabolism
16.
Nature ; 583(7817): 631-637, 2020 07.
Article in English | MEDLINE | ID: mdl-32641830

ABSTRACT

Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.


Subject(s)
Bacterial Toxins/metabolism , Cytidine Deaminase/metabolism , DNA, Mitochondrial/genetics , Gene Editing/methods , Genes, Mitochondrial/genetics , Mitochondria/genetics , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Base Sequence , Burkholderia cenocepacia/enzymology , Burkholderia cenocepacia/genetics , Cell Respiration/genetics , Cytidine/metabolism , Cytidine Deaminase/chemistry , Cytidine Deaminase/genetics , Genome, Mitochondrial/genetics , HEK293 Cells , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , Mutation , Oxidative Phosphorylation , Protein Engineering , RNA, Guide, Kinetoplastida/genetics , Substrate Specificity , Type VI Secretion Systems/metabolism
17.
Nat Biotechnol ; 38(5): 582-585, 2020 05.
Article in English | MEDLINE | ID: mdl-32393904

ABSTRACT

Prime editors, which are CRISPR-Cas9 nickase (H840A)-reverse transcriptase fusions programmed with prime editing guide RNAs (pegRNAs), can edit bases in mammalian cells without donor DNA or double-strand breaks. We adapted prime editors for use in plants through codon, promoter, and editing-condition optimization. The resulting suite of plant prime editors enable point mutations, insertions and deletions in rice and wheat protoplasts. Regenerated prime-edited rice plants were obtained at frequencies of up to 21.8%.


Subject(s)
Gene Editing/methods , Oryza/growth & development , Triticum/growth & development , CRISPR-Cas Systems , Deoxyribonuclease I/metabolism , Genome, Plant , Oryza/genetics , Triticum/genetics
18.
Nat Biotechnol ; 38(5): 620-628, 2020 05.
Article in English | MEDLINE | ID: mdl-32042165

ABSTRACT

Cytosine base editors (CBEs) enable targeted C•G-to-T•A conversions in genomic DNA. Recent studies report that BE3, the original CBE, induces a low frequency of genome-wide Cas9-independent off-target C•G-to-T•A mutation in mouse embryos and in rice. Here we develop multiple rapid, cost-effective methods to screen the propensity of different CBEs to induce Cas9-independent deamination in Escherichia coli and in human cells. We use these assays to identify CBEs with reduced Cas9-independent deamination and validate via whole-genome sequencing that YE1, a narrowed-window CBE variant, displays background levels of Cas9-independent off-target editing. We engineered YE1 variants that retain the substrate-targeting scope of high-activity CBEs while maintaining minimal Cas9-independent off-target editing. The suite of CBEs characterized and engineered in this study collectively offer ~10-100-fold lower average Cas9-independent off-target DNA editing while maintaining robust on-target editing at most positions targetable by canonical CBEs, and thus are especially promising for applications in which off-target editing must be minimized.


Subject(s)
CRISPR-Associated Protein 9/metabolism , Cytosine/metabolism , Escherichia coli/genetics , Gene Editing/methods , Gene Editing/economics , HEK293 Cells , Humans , Mutation , Whole Genome Sequencing
19.
Nature ; 576(7785): 149-157, 2019 12.
Article in English | MEDLINE | ID: mdl-31634902

ABSTRACT

Most genetic variants that contribute to disease1 are challenging to correct efficiently and without excess byproducts2-5. Here we describe prime editing, a versatile and precise genome editing method that directly writes new genetic information into a specified DNA site using a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase, programmed with a prime editing guide RNA (pegRNA) that both specifies the target site and encodes the desired edit. We performed more than 175 edits in human cells, including targeted insertions, deletions, and all 12 types of point mutation, without requiring double-strand breaks or donor DNA templates. We used prime editing in human cells to correct, efficiently and with few byproducts, the primary genetic causes of sickle cell disease (requiring a transversion in HBB) and Tay-Sachs disease (requiring a deletion in HEXA); to install a protective transversion in PRNP; and to insert various tags and epitopes precisely into target loci. Four human cell lines and primary post-mitotic mouse cortical neurons support prime editing with varying efficiencies. Prime editing shows higher or similar efficiency and fewer byproducts than homology-directed repair, has complementary strengths and weaknesses compared to base editing, and induces much lower off-target editing than Cas9 nuclease at known Cas9 off-target sites. Prime editing substantially expands the scope and capabilities of genome editing, and in principle could correct up to 89% of known genetic variants associated with human diseases.


Subject(s)
DNA/genetics , Gene Editing , Cell Line , DNA Breaks, Double-Stranded , Genome , Humans , Point Mutation , Saccharomyces cerevisiae
20.
Elife ; 72018 05 15.
Article in English | MEDLINE | ID: mdl-29759114

ABSTRACT

RNA-catalyzed RNA replication is widely believed to have supported a primordial biology. However, RNA catalysis is dependent upon RNA folding, and this yields structures that can block replication of such RNAs. To address this apparent paradox, we have re-examined the building blocks used for RNA replication. We report RNA-catalysed RNA synthesis on structured templates when using trinucleotide triphosphates (triplets) as substrates, catalysed by a general and accurate triplet polymerase ribozyme that emerged from in vitro evolution as a mutualistic RNA heterodimer. The triplets cooperatively invaded and unraveled even highly stable RNA secondary structures, and support non-canonical primer-free and bidirectional modes of RNA synthesis and replication. Triplet substrates thus resolve a central incongruity of RNA replication, and here allow the ribozyme to synthesise its own catalytic subunit '+' and '-' strands in segments and assemble them into a new active ribozyme.


Subject(s)
Codon/metabolism , RNA, Catalytic/metabolism , RNA/biosynthesis , Nucleic Acid Conformation , RNA/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...