Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 6(18)2021 09 22.
Article in English | MEDLINE | ID: mdl-34375312

ABSTRACT

Dysfunctional dopaminergic neurotransmission is central to movement disorders and mental diseases. The dopamine transporter (DAT) regulates extracellular dopamine levels, but the genetic and mechanistic link between DAT function and dopamine-related pathologies is not clear. Particularly, the pathophysiological significance of monoallelic missense mutations in DAT is unknown. Here, we use clinical information, neuroimaging, and large-scale exome-sequencing data to uncover the occurrence and phenotypic spectrum of a DAT coding variant, DAT-K619N, which localizes to the critical C-terminal PSD-95/Discs-large/ZO-1 homology-binding motif of human DAT (hDAT). We identified the rare but recurrent hDAT-K619N variant in exome-sequenced samples of patients with neuropsychiatric diseases and a patient with early-onset neurodegenerative parkinsonism and comorbid neuropsychiatric disease. In cell cultures, hDAT-K619N displayed reduced uptake capacity, decreased surface expression, and accelerated turnover. Unilateral expression in mouse nigrostriatal neurons revealed differential effects of hDAT-K619N and hDAT-WT on dopamine-directed behaviors, and hDAT-K619N expression in Drosophila led to impairments in dopamine transmission with accompanying hyperlocomotion and age-dependent disturbances of the negative geotactic response. Moreover, cellular studies and viral expression of hDAT-K619N in mice demonstrated a dominant-negative effect of the hDAT-K619N mutant. Summarized, our results suggest that hDAT-K619N can effectuate dopamine dysfunction of pathological relevance in a dominant-negative manner.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Mental Disorders/genetics , Neurons/metabolism , Parkinsonian Disorders/genetics , Adult , Animals , Behavior, Animal , Biological Transport , Cells, Cultured , Databases, Genetic , Drosophila , Exome , Female , Humans , Hypokinesia/diagnostic imaging , Hypokinesia/genetics , Hypokinesia/metabolism , Male , Mental Disorders/metabolism , Mesencephalon/metabolism , Mice , Middle Aged , Motor Activity/genetics , Mutation , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/metabolism , Phenotype , Synaptic Transmission , Tomography, Emission-Computed, Single-Photon , Transfection
2.
eNeuro ; 5(3)2018.
Article in English | MEDLINE | ID: mdl-29911172

ABSTRACT

Protein interacting with C-kinase 1 (PICK1) is a widely expressed scaffold protein known to interact via its PSD-95/discs-large/ZO-1 (PDZ)-domain with several membrane proteins including the dopamine (DA) transporter (DAT), the primary target for cocaine's reinforcing actions. Here, we establish the importance of PICK1 for behavioral effects observed after both acute and repeated administration of cocaine. In PICK1 knock-out (KO) mice, the acute locomotor response to a single injection of cocaine was markedly attenuated. Moreover, in support of a role for PICK1 in neuroadaptive changes induced by cocaine, we observed diminished cocaine intake in a self-administration paradigm. Reduced behavioral effects of cocaine were not associated with decreased striatal DAT distribution and most likely not caused by the ∼30% reduction in synaptosomal DA uptake observed in PICK1 KO mice. The PICK1 KO mice demonstrated preserved behavioral responses to DA receptor agonists supporting intact downstream DA receptor signaling. Unexpectedly, we found a prominent increase in striatal DA content and levels of striatal tyrosine hydroxylase (TH) in PICK1 KO mice. Chronoamperometric recordings showed enhanced DA release in PICK1 KO mice, consistent with increased striatal DA pools. Viral-mediated knock-down (KD) of PICK1 in cultured dopaminergic neurons increased TH expression, supporting a direct cellular effect of PICK1. In summary, in addition to demonstrating a key role of PICK1 in mediating behavioral effects of cocaine, our data reveal a so far unappreciated role of PICK1 in DA homeostasis that possibly involves negative regulation of striatal TH levels.


Subject(s)
Carrier Proteins/metabolism , Cocaine/administration & dosage , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Homeostasis/drug effects , Nuclear Proteins/metabolism , Animals , Carrier Proteins/genetics , Cell Cycle Proteins , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Locomotion/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/genetics , Reinforcement, Psychology , Signal Transduction/drug effects , Tyrosine 3-Monooxygenase/metabolism
3.
Nat Commun ; 8(1): 740, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28963530

ABSTRACT

Dopamine regulates reward, cognition, and locomotor functions. By mediating rapid reuptake of extracellular dopamine, the dopamine transporter is critical for spatiotemporal control of dopaminergic neurotransmission. Here, we use super-resolution imaging to show that the dopamine transporter is dynamically sequestrated into cholesterol-dependent nanodomains in the plasma membrane of presynaptic varicosities and neuronal projections of dopaminergic neurons. Stochastic optical reconstruction microscopy reveals irregular dopamine transporter nanodomains (∼70 nm mean diameter) that were highly sensitive to cholesterol depletion. Live photoactivated localization microscopy shows a similar dopamine transporter membrane organization in live heterologous cells. In neurons, dual-color dSTORM shows that tyrosine hydroxylase and vesicular monoamine transporter-2 are distinctively localized adjacent to, but not overlapping with, the dopamine transporter nanodomains. The molecular organization of the dopamine transporter in nanodomains is reversibly reduced by short-term activation of NMDA-type ionotropic glutamate receptors, implicating dopamine transporter nanodomain distribution as a potential mechanism to modulate dopaminergic neurotransmission in response to excitatory input.The dopamine transporter (DAT) has a crucial role in the regulation of neurotransmission. Here, the authors use super-resolution imaging to show that DAT clusters into cholesterol-dependent membrane regions that are reversibly regulated by ionotropic glutamate receptors activation.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Presynaptic Terminals/metabolism , Animals , Cell Line , Cell Membrane/ultrastructure , Dopamine Plasma Membrane Transport Proteins/ultrastructure , Dopaminergic Neurons/ultrastructure , Mice , Microscopy , Neurons/metabolism , Neurons/ultrastructure , Presynaptic Terminals/ultrastructure , Receptors, Ionotropic Glutamate/metabolism , Synaptic Transmission , Tyrosine 3-Monooxygenase/metabolism , Vesicular Monoamine Transport Proteins/metabolism
4.
Eur J Neurosci ; 42(7): 2438-54, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26286107

ABSTRACT

Midbrain dopaminergic (DAergic) neurons are a heterogeneous cell group, composed of functionally distinct cell populations projecting to the basal ganglia, prefrontal cortex and limbic system. Despite their functional significance, the midbrain population of DAergic neurons is sparse, constituting only 20 000-30 000 neurons in mice, and development of novel tools to identify these cells is warranted. Here, a bacterial artificial chromosome mouse line [Dat1-enhanced green fluorescent protein (eGFP)] from the Gene Expression Nervous System Atlas (GENSAT) that expresses eGFP under control of the dopamine transporter (DAT) promoter was characterized. Confocal microscopy analysis of brain sections showed strong eGFP signal reporter in midbrain regions and striatal terminals that co-localized with the DAergic markers DAT and tyrosine hydroxylase (TH). Thorough quantification of co-localization of the eGFP reporter signal with DAT and TH in the ventral midbrain showed that a vast majority of eGFP-expressing neurons are DAergic. Importantly, expression profiles also revealed DAergic heterogeneity when comparing substantia nigra and ventral tegmental area. Dat1-eGFP mice showed neither change in synaptosomal DA uptake nor altered levels of DAT and TH in both striatum and midbrain. No behavioural difference between Dat1-eGFP and wild-type was found, suggesting that the strain is not aberrant. Finally, cell populations highly enriched in DAergic neurons can be obtained from postnatal mice by fluorescence-activated cell sorting and the sorted neurons can be cultured in vitro. The current investigation demonstrates that eGFP expression in this mouse line is selective for DAergic neurons, suggesting that the Dat1-eGFP mouse strain constitutes a promising tool for delineating new aspects of DA biology.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Ventral Tegmental Area/metabolism , Animals , Behavior, Animal/physiology , Dopamine Plasma Membrane Transport Proteins/genetics , Female , Flow Cytometry , Green Fluorescent Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Synaptosomes/metabolism , Tyrosine 3-Monooxygenase/metabolism
5.
Biochem J ; 468(1): 177-90, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25761794

ABSTRACT

The serotonin [5-HT (5-hydroxytryptamine)] transporter (SERT) controls serotonergic neurotransmission in the brain by rapid clearance of 5-HT from the synaptic cleft into presynaptic neurons. SERTs are primary targets for antidepressants for therapeutic intervention of mood disorders. Our previous studies have identified the involvement of several signalling pathways and protein kinases in regulating SERT function, trafficking and phosphorylation. However, whether Akt/PKB (protein kinase) regulates SERT function is not known. In the present study, we made the novel observation that inhibition of Akt resulted in the down-regulation of SERT function through the regulation of SERT trafficking and phosphorylation. Akt inhibitor Akt X {10-(4'-[N-diethylamino)butyl]-2-chlorophenoxazine} reduced the endogenously phosphorylated Akt and significantly decreased 5-HT uptake and 5-HT-uptake capacity. Furthermore, SERT activity is also reduced by siRNA down-regulation of total and phospho-Akt levels. The reduction in SERT activity is paralleled by lower levels of cell-surface SERT protein, reduced SERT exocytosis with no effect on SERT endocytosis and accumulation of SERT in intracellular endocytic compartments with the most prominent localization to late endosomes and lysosomes. Akt2 inhibitor was more effective than Akt1 inhibitor in inhibiting SERT activity. Inhibition of downstream Akt kinase GSK3α/ß (glycogen synthase kinase α/ß) stimulates SERT function. Akt inhibition leads to a decrease in SERT basal phosphorylation. Our results provide evidence that Akt regulates SERT function and cell-surface expression by regulating the intracellular SERT distribution and plasma membrane availability, which perhaps may be linked to SERT phosphorylation state. Thus any changes in the activation of Akt and/or GSK3α/ß could alter SERT-mediated 5-HT clearance and subsequently serotonergic neurotransmission.


Subject(s)
Proto-Oncogene Proteins c-akt/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Antidepressive Agents/pharmacology , Cell Membrane/metabolism , Down-Regulation , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/metabolism , HEK293 Cells , Humans , Lysosomes/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , RNA, Small Interfering/genetics , Recombinant Proteins/metabolism , Serotonin/metabolism , Signal Transduction , Synaptic Transmission
6.
ACS Med Chem Lett ; 5(6): 696-9, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24944746

ABSTRACT

Novel rhodamine-labeled ligands, based on (S)-citalopram, were synthesized and evaluated for uptake inhibition at the human serotonin, dopamine, and norepinephrine transporters (hSERT, hDAT, and hNET, respectively) and for binding at SERT, in transiently transfected COS7 cells. Compound 14 demonstrated high affinity binding and selectivity for SERT (K i = 3 nM). Visualization of SERT, using confocal laser scanning microscopy, validated compound 14 as a novel tool for studying SERT expression and distribution in living cells.

7.
J Biol Chem ; 289(33): 23004-23019, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24973209

ABSTRACT

The serotonin transporter (SERT) plays a critical role in regulating serotonin signaling by mediating reuptake of serotonin from the extracellular space. The molecular and cellular mechanisms controlling SERT levels in the membrane remain poorly understood. To study trafficking of the surface resident SERT, two functional epitope-tagged variants were generated. Fusion of a FLAG-tagged one-transmembrane segment protein Tac to the SERT N terminus generated a transporter with an extracellular epitope suited for trafficking studies (TacSERT). Likewise, a construct with an extracellular antibody epitope was generated by introducing an HA (hemagglutinin) tag in the extracellular loop 2 of SERT (HA-SERT). By using TacSERT and HA-SERT in antibody-based internalization assays, we show that SERT undergoes constitutive internalization in a dynamin-dependent manner. Confocal images of constitutively internalized SERT demonstrated that SERT primarily co-localized with the late endosomal/lysosomal marker Rab7, whereas little co-localization was observed with the Rab11, a marker of the "long loop" recycling pathway. This sorting pattern was distinct from that of a prototypical recycling membrane protein, the ß2-adrenergic receptor. Furthermore, internalized SERT co-localized with the lysosomal marker LysoTracker and not with transferrin. The sorting pattern was further confirmed by visualizing internalization of SERT using the fluorescent cocaine analog JHC1-64 and by reversible and pulse-chase biotinylation assays showing evidence for lysosomal degradation of the internalized transporter. Finally, we found that SERT internalized in response to stimulation with 12-myristate 13-acetate co-localized primarily with Rab7- and LysoTracker-positive compartments. We conclude that SERT is constitutively internalized and that the internalized transporter is sorted mainly to degradation.


Subject(s)
Endosomes/metabolism , Lysosomes/metabolism , Proteolysis , Serotonin Plasma Membrane Transport Proteins/metabolism , Carcinogens/pharmacology , Endosomes/genetics , HEK293 Cells , Humans , Lysosomes/genetics , Protein Transport/drug effects , Protein Transport/physiology , Serotonin Plasma Membrane Transport Proteins/genetics , Tetradecanoylphorbol Acetate/pharmacology , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
8.
J Biol Chem ; 287(15): 12293-308, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22303009

ABSTRACT

The scaffolding protein PICK1 (protein interacting with C kinase 1) contains an N-terminal PSD-95/Discs large/ZO-1 (PDZ) domain and a central lipid-binding Bin/amphiphysin/Rvs (BAR) domain. PICK1 is thought to regulate trafficking of its PDZ binding partners but different and even opposing functions have been suggested. Here, we apply ELISA-based assays and confocal microscopy in HEK293 cells with inducible PICK1 expression to assess in an isolated system the ability of PICK1 to regulate trafficking of natural and engineered PDZ binding partners. The dopamine transporter (DAT), which primarily sorts to degradation upon internalization, did not form perinuclear clusters with PICK1, and PICK1 did not affect DAT internalization/recycling. However, transfer of the PICK1-binding DAT C terminus to the ß(2)-adrenergic receptor, which sorts to recycling upon internalization, led to formation of PICK1 co-clusters in Rab11-positive compartments. Furthermore, PICK1 inhibited Rab11-mediated recycling of the receptor in a BAR and PDZ domain-dependent manner. In contrast, transfer of the DAT C terminus to the δ-opioid receptor, which sorts to degradation, did not result in PICK1 co-clusters or any change in internalization/recycling. Further support for a role of PICK1 determined by its PDZ cargo was obtained for the PICK1 interaction partner prolactin-releasing peptide receptor (GPR10). GPR10 co-localized with Rab11 and clustered with PICK1 upon constitutive internalization but co-localized with the late endosomal marker Rab7 and did not cluster with PICK1 upon agonist-induced internalization. Our data suggest a selective role of PICK1 in clustering and reducing the recycling rates of PDZ domain binding partners sorted to the Rab11-dependent recycling pathway.


Subject(s)
Carrier Proteins/physiology , Endocytosis , Nuclear Proteins/physiology , Protein Transport , rab GTP-Binding Proteins/metabolism , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Line , Dopamine Plasma Membrane Transport Proteins/metabolism , Humans , Interleukin-2 Receptor alpha Subunit/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Receptors, AMPA/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Opioid/metabolism , Recombinant Fusion Proteins/metabolism , rab7 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...