Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters











Publication year range
1.
Drug Dev Res ; 85(5): e22244, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39138855

ABSTRACT

Nanovaccines have been designed to overcome the limitations associated with conventional vaccines. Effective delivery methods such as engineered carriers or smart nanoparticles (NPs) are critical requisites for inducing self-tolerance and optimizing vaccine immunogenicity with minimum side effects. NPs can be used as adjuvants, immunogens, or nanocarriers to develop nanovaccines for efficient antigen delivery. Multiloaded nanovaccines carrying multiple tumor antigens along with immunostimulants can effectively increase immunity against tumor cells. They can be biologically engineered to boost interactions with dendritic cells and to allow a gradual and constant antigen release. Modifying NPs surface properties, using high-density lipoprotein-mimicking nanodiscs, and developing nano-based artificial antigen-presenting cells such as dendritic cell-derived-exosomes are amongst the new developed technologies to enhance antigen-presentation and immune reactions against tumor cells. The present review provides an overview on the different perspectives, improvements, and barriers of successful clinical application of current cancer therapeutic and vaccination options. The immunomodulatory effects of different types of nanovaccines and the nanoparticles incorporated into their structure are described. The advantages of using nanovaccines to prevent and treat common illnesses such as AIDS, malaria, cancer and tuberculosis are discussed. Further, potential paths to develop optimal cancer vaccines are described. Given the immunosuppressive characteristics of both cancer cells and the tumor microenvironment, applying immunomodulators and immune checkpoint inhibitors in combination with other conventional anticancer therapies are necessary to boost the effectiveness of the immune response.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Immunotherapy , Nanoparticles , Neoplasms , Humans , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Nanoparticles/administration & dosage , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Antigens, Neoplasm/immunology , Antigens, Neoplasm/administration & dosage , Animals , Combined Modality Therapy , Drug Delivery Systems/methods , Nanovaccines
2.
Front Bioeng Biotechnol ; 12: 1436297, 2024.
Article in English | MEDLINE | ID: mdl-39055339

ABSTRACT

Cancer, being one of the deadliest diseases, poses significant challenges despite the existence of traditional treatment approaches. This has led to a growing demand for innovative pharmaceutical agents that specifically target cancer cells for effective treatment. In recent years, the use of metal nanoparticles (NPs) as a promising alternative to conventional therapies has gained prominence in cancer research. Metal NPs exhibit unique properties that hold tremendous potential for various applications in cancer treatment. Studies have demonstrated that certain metals possess inherent or acquired anticancer capabilities through their surfaces. These properties make metal NPs an attractive focus for therapeutic development. In this review, we will investigate the applicability of several distinct classes of metal NPs for tumor targeting in cancer treatment. These classes may include gold, silver, iron oxide, and other metals with unique properties that can be exploited for therapeutic purposes. Additionally, we will provide a comprehensive summary of the risk factors associated with the therapeutic application of metal NPs. Understanding and addressing these factors will be crucial for successful clinical translation and to mitigate any potential challenges or failures in the translation of metal NP-based therapies. By exploring the therapeutic potential of metal NPs and identifying the associated risk factors, this review aims to contribute to the advancement of cancer treatment strategies. The anticipated outcome of this review is to provide valuable insights and pave the way for the advancement of effective and targeted therapies utilizing metal NPs specifically for cancer patients.

3.
Biomed Mater ; 19(5)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39074507

ABSTRACT

Quantum dots (QDs) are with exceptional physicochemical and biological properties, making them highly versatile for a wide range of applications in cancer therapy. One of the key features of QDs is their unique electronic structure, which gives them functional attributes. Notably, their photoluminescence can be strong and adjustable, allowing them to be effectively used in fluorescence based diagnosis such as biosensing and bioimaging. In addition, QDs demonstrate an impressive capacity for loading cargo, making them ideal for drug delivery applications. Moreover, their ability to absorb incident radiation positions QDs as promising candidates for cancer-killing techniques like photodynamic therapy. The objective of this comprehensive review is to present a current and comprehensive overview of the recent advancements in utilizing QDs as multifunctional and innovative biomaterials. This review focuses on elucidating the biological, electronic, and physicochemical properties of QDs, along with discussing the technical advancements in QD synthesis. Furthermore, it thoroughly explores the progress made in utilizing QDs for diagnosis based on biosensing, bioimaging, and therapy applications including drug delivery and necrosis, highlighting their significant potential in the field of cancer treatment. Furthermore, the review addresses the current limitations associated with QDs in cancer therapy and provides valuable insights into future directions, thereby facilitating further advancements in this field. By presenting a comprehensive and well-structured overview, this review serves as an authoritative and informative resource that can guide future research endeavors and foster continued progress in the field of QDs for cancer therapy.


Subject(s)
Biosensing Techniques , Drug Delivery Systems , Neoplasms , Quantum Dots , Quantum Dots/chemistry , Humans , Neoplasms/diagnostic imaging , Neoplasms/therapy , Neoplasms/drug therapy , Animals , Biosensing Techniques/methods , Photochemotherapy/methods , Biocompatible Materials/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage
4.
Int J Biol Macromol ; 276(Pt 2): 133900, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019377

ABSTRACT

An innovative pH-responsive nanocomposite, comprising agarose (AGA) modified with polyethylene glycol (PEG) hydrogel and coated with ferric oxide (Fe2O3), has been formulated to facilitate the precise administration of 5-fluorouracil (5-Fu) to breast cancer cells. By utilizing a double emulsion technique, the size of the nanocomposites was significantly reduced through the application of almond oil; the inclusion of span 80 further improved their uniformity. The physiochemical properties of the nanocomposite were thoroughly examined by Fourier Transformed Infrared (FT-IR), X-ray diffraction (XRD), Field Emission-Scanning Electron Microscope (FE-SEM), Vibrating Sample Magnetometer (VSM), dynamic light scattering (DLS), and zeta potential tests. The verification of the uniform particle distribution was achieved by employing FE-SEM and VSM analyses. The average diameter of the particles was 223 nm, and their zeta potential was -47.6 mV. In addition, the nanocomposite exhibited a regulated release of 5-Fu at pH 5.4 and pH 7.4, as indicated by an in vitro drug release profile. PEG-AGA- Fe2O3@5-Fu exhibited biocompatibility, as indicated by the lack of deleterious effects observed in tumor cells. This revolutionary nanocomposite demonstrates exceptional promise for breast cancer treatment, underscoring its significance as a major advancement in the pursuit of novel nanotechnologies for cancer therapy.


Subject(s)
Ferric Compounds , Fluorouracil , Hydrogels , Nanocomposites , Polyethylene Glycols , Sepharose , Fluorouracil/chemistry , Fluorouracil/pharmacology , Polyethylene Glycols/chemistry , Sepharose/chemistry , Ferric Compounds/chemistry , Humans , Nanocomposites/chemistry , Hydrogels/chemistry , Drug Liberation , Drug Carriers/chemistry , Hydrogen-Ion Concentration , Drug Delivery Systems , Cell Line, Tumor
5.
Article in English | MEDLINE | ID: mdl-38908501

ABSTRACT

Substance dependence represents a pervasive global concern within the realm of public health. Presently, it is delineated as a persistent and recurrent neurological disorder stemming from drug-triggered neuroadaptations in the brain's reward circuitry. Despite the availability of various therapeutic modalities, there has been a steady escalation in the mortality rate attributed to drug overdoses. Substantial endeavors have been directed towards the exploration of innovative interventions aimed at mitigating cravings and drug-induced repetitive behaviors. Within this review, we encapsulate the most auspicious contemporary treatment methodologies, accentuating meta-analyses of efficacious pharmacological and non-pharmacological approaches: including gabapentin, topiramate, prazosin, physical exercise regimens, and cerebral stimulation techniques.


Subject(s)
Substance-Related Disorders , Humans , Substance-Related Disorders/therapy
6.
Biosens Bioelectron ; 260: 116425, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38824703

ABSTRACT

Cancer antigen 15-3 (CA 15-3) is a crucial marker used in the diagnosis and monitoring of breast cancer (BC). The demand for early and precise cancer detection has grown, making the creation of biosensors that are highly sensitive and specific essential. This review paper provides a thorough examination of the progress made in optical and electrochemical biosensors for detecting the cancer biomarker CA 15-3. We focus on explaining their fundamental principles, sensitivity, specificity, and potential for point-of-care applications. The performance attributes of these biosensors are assessed by considering their limits of detection, reaction times, and operational stability, while also making comparisons to conventional methods of CA 15-3 detection. In addition, we explore the incorporation of nanomaterials and innovative transducer components to improve the performance of biosensors. This paper conducts a thorough examination of recent studies to identify the existing obstacles. It also suggests potential areas for future research in this fast progressing field.The paper provides insights into their advancement and utilization to enhance patient outcomes. Both categories of biosensors provide significant promise for the detection of CA 15-3 and offer distinct advantages compared to conventional analytical approaches.


Subject(s)
Biomarkers, Tumor , Biosensing Techniques , Breast Neoplasms , Electrochemical Techniques , Mucin-1 , Humans , Breast Neoplasms/diagnosis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Female , Electrochemical Techniques/methods , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , Mucin-1/analysis
8.
Int J Biol Macromol ; 265(Pt 1): 130901, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490383

ABSTRACT

This study introduces a starch/PVA/g-C3N4 nanocarrier hydrogel for pH-sensitive DOX delivery in breast cancer. DOX was loaded into the nanocarrier with 44.75 % loading efficiency and 88 % Entrapment Efficiency. The release of DOX from the starch/PVA/g-C3N4 hydrogel was pH-sensitive: DOX was released faster in the acidic environment pertinent to cancer tumors (with a pH level of 5.4) than in the surrounding regular tissue environment carrying a more neutral environment (pH 7.4). The release kinetics analysis, encompassing zero-order, first-order, Higuchi, and Korsmeyer-Peppas models, revealed significant fitting with the Higuchi model at both pH 5.4 (R2 = 0.99, K = 9.89) and pH 7.4 (R2 = 0.99, K = 5.70) levels. Finally, we found that hydrogel was less damaging to healthy cells and more specific to apoptotic cells than the drug's free form. The starch/PVA/g-C3N4 hydrogel had low toxicity for both normal cells and breast cancer cells, whereas DOX loaded into the starch/PVA/g-C3N4 hydrogel had higher toxicity for cancer cells than the DOX-only control samples, and led to specific high apoptosis for cancer cells. The study suggests that DOX can be loaded into a starch/PVA/g-C3N4 hydrogel to improve the specificity of the drug's release in cancer tumors or in vitro breast cancer cells.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Hydrogels/therapeutic use , Starch/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Hydrogen-Ion Concentration , Drug Carriers/therapeutic use
9.
Nanoscale ; 16(8): 3881-3914, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38353296

ABSTRACT

The long noncoding RNAs (lncRNAs) comprise a wide range of RNA species whose length exceeds 200 nucleotides, which regulate the expression of genes and cellular functions in a wide range of organisms. Several diseases, including malignancy, have been associated with lncRNA dysregulation. Due to their functions in cancer development and progression, lncRNAs have emerged as promising biomarkers and therapeutic targets in cancer diagnosis and treatment. Several studies have investigated the anti-cancer properties of lncRNAs; however, only a few lncRNAs have been found to exhibit tumor suppressor properties. Furthermore, their length and poor stability make them difficult to synthesize. Thus, to overcome the instability of lncRNAs, poor specificity, and their off-target effects, researchers have constructed nanocarriers that encapsulate lncRNAs. Recently, translational medicine research has focused on delivering lncRNAs into tumor cells, including cancer cells, through nano-drug delivery systems in vivo. The developed nanocarriers can protect, target, and release lncRNAs under controlled conditions without appreciable adverse effects. To deliver lncRNAs to cancer cells, various nanocarriers, such as exosomes, microbubbles, polymer nanoparticles, 1,2-dioleyl-3-trimethylammoniumpropane chloride nanocarriers, and virus-like particles, have been successfully developed. Despite this, every nanocarrier has its own advantages and disadvantages when it comes to delivering nucleic acids effectively and safely. This article examines the current status of nanocarriers for lncRNA delivery in cancer therapy, focusing on their potential to enhance cancer treatment.


Subject(s)
Exosomes , Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Biomarkers, Tumor/metabolism , Exosomes/metabolism , Gene Expression Regulation, Neoplastic
10.
Med Oncol ; 41(3): 68, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289404

ABSTRACT

Osteosarcoma (OS), a lethal malignancy, has witnessed an escalating incidence rate. Contemporary therapeutic strategies for this cancer have proven to be inadequate, primarily due to their extensive side effects and the lack of specificity in targeting the molecular pathways implicated in this disease. Consequently, this project is aimed to manufacture and characterize Poly (Lactic-co-glycolic acid) embodying curcumin, a phytocompound devoid of adverse effects which not only exerts an anti-neoplastic influence but also significantly modulates the genetic pathways associated with this malignancy. In this investigation, multiple formulations of PLGA-Cur were synthesized, and the choice of optimal formula was made considering the efficiency of nanoparticle encapsulation and the drug dispersion rate from synthesized PLGA. The selected formulation's physical and chemical attributes, such as its dimension, polydispersity index of the formulation, surface electrical charge, physical-spatial structure, and stability, were examined using methods, including Dynamic light scattering (DLS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and spectrophotometry. Subsequently, the absence of interaction between the drug and the system was assessed using Fourier Transform Infrared Spectroscopy (FT-IR), and cellular uptake was evaluated using fluorescence microscopy. The smart system's responsiveness to environmental stimuli was determined using the dialysis bag method and its anti-tumor properties were investigated on the SAOS-2 cell line. Finally, to evaluate the system's genetic impact on bone cancer, the molecular quantification of the P53 tumor suppressor gene and the oncogene MCL-2 was analyzed using real-time PCR and their protein expression levels were also examined. The PLGAs synthesized in this study exhibited an encapsulation rate of 91.5 ± 1.16% and a maximum release rate of 71 ± 1%, which were responsive to various stimuli. The size of the PLGAs was 12.5 ± 321.2 nm, with an electric charge of -38.9 ± 2.6 mV and a PDI of 0.107, indicating suitable morphology and stability. Furthermore, both the system and the drug retained their natural properties after inoculation. The system was readily absorbed by cancer cells and effectively exerted its anti-cancer properties. Notably, the system had a significant impact on the mentioned genes' expression. The produced nanosystem, possessing optimal physicochemical properties, has the potential to enhance the anti-cancer efficacy of curcumin. This is achieved by altering molecular and genetic pathways within cancer cells, thereby positioning it as a viable adjunctive treatment modality and also synthesizing of this herbal base drug system consider as a completely novel method for cancer therapy that can efficiently modulate genetical pathways involved.


Subject(s)
Bone Neoplasms , Curcumin , Osteosarcoma , Humans , Tumor Suppressor Protein p53/genetics , Spectroscopy, Fourier Transform Infrared , Oncogenes , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Genes, Tumor Suppressor , Hydrogen-Ion Concentration
11.
Macromol Biosci ; 24(2): e2300336, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37815044

ABSTRACT

Biomaterials such as nanohydroxyapatite and gelatin are widely explored to improve damaged joint architecture associated with rheumatoid arthritis (RA). Besides joint damage, RA is associated with inflammation of joints and cartilage, which potentiates the need for both bone nucleation and therapeutic intervention. For such purpose, a modified nanoprecipitation method is used herein to fabricate tofacitinib (Tofa)-loaded nanohydroxyapatite (nHA) embedded gelatin (GLT) nanoparticles (NPs) (Tofa-nHA-GLT NPs). The quality by design (QbD) approach is chosen to assess the key parameters that determine the efficiency of the NPs, and are further optimized via Box-Behnken design of experiment. The particle size, polydispersity, zeta potential, and encapsulation efficiency (EE) of the prepared NPs are found to be 269 nm, 0.18, -20.5 mV, and 90.7%, respectively. Furthermore, the NPs have improved stability, skin permeability, and a sustained drug release pattern at pH 6.5 (arthritic joint pH). Moreover, rhodamine-B loaded nHA-GLT NPs demonstrates considerably higher cellular uptake by the murine-derived macrophages than free rhodamine-B solution. In vitro, cell-based experiments confirm the good cell biocompatibility with insignificant toxicity. Thus, QbD-based approach has successfully led to the development of Tofa-nHA-GLT NPs with the potential to target inflamed arthritic joint.


Subject(s)
Arthritis, Rheumatoid , Nanoparticles , Mice , Humans , Animals , Gelatin/pharmacology , Durapatite/pharmacology , Biomimetics , Nanoparticles/therapeutic use , Drug Liberation , Rhodamines , Drug Carriers/pharmacology , Drug Carriers/therapeutic use , Particle Size
12.
Biomed Pharmacother ; 170: 115973, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38064969

ABSTRACT

The resistance of cancer cells to chemotherapy, also known as chemo-resistance, poses a significant obstacle to cancer treatment and can ultimately result in patient mortality. Epithelial-mesenchymal transition (EMT) is one of the many factors and processes responsible for chemo-resistance. Studies have shown that targeting EMT can help overcome chemo-resistance, and nanotechnology and nanomedicine have emerged as promising approaches to achieve this goal. This article discusses the potential of nanotechnology in inhibiting EMT and proposes a viable strategy to combat chemo-resistance in various solid tumors, including breast cancer, lung cancer, pancreatic cancer, glioblastoma, ovarian cancer, gastric cancer, and hepatocellular carcinoma. While nanotechnology has shown promising results in targeting EMT, further research is necessary to explore its full potential in overcoming chemo-resistance and discovering more effective methods in the future.


Subject(s)
Breast Neoplasms , Liver Neoplasms , Humans , Female , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Breast Neoplasms/drug therapy , Nanotechnology , Cell Line, Tumor
13.
Toxicol Res (Camb) ; 12(5): 716-740, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37915472

ABSTRACT

Introduction: Apoptosis, necrosis, and cancer necrosis factor (TNF-a) are all impacted by the nanotoxicity of multifunctional stoichiometric cobalt oxide nanoparticles (SCoONPs) at nano-biointerfaces. The creation of multi-functional nanoparticles has had a considerable impact on the transport of drugs and genes, nanotheranostics (in-vivo imaging, concurrent diagnostics), interventions for external healing, the creation of nano-bio interfaces, and the instigation of desired changes in nanotherapeutics. Objectives: The quantitative structure-activity relationships, chemical transformations, biological interactions as well as toxicological analyses are considered as main objectives. Discrete dimensions of SCoNPs-cell interaction interfaces, their characteristic physical features (size, shape, shell structure, and surface chemistry), impact on cell proliferation and differentiation are the key factors responsible for nanotoxicity. Methods: The development of multi-functional nanoparticles has been significant in drug/gene delivery, nanotheranostics (in-vivo imaging, coinciding diagnostics), and external healing interventions, designing a nano-bio interface, as well as inciting desired alterations in nanotherapeutics. Every so often, the cellular uptake of multi-functional cobalt [Co, CoO, Co2(CO)8 and Co3O4] nanoparticles (SCoONPs) influences cellular mechanics and initiates numerous repercussions (oxidative stress, DNA damage, cytogenotoxicity, and chromosomal damage) in pathways, including the generation of dysregulating factors involved in biochemical transformations. Results: The concerns and influences of multifunctional SCoNPs on different cell mechanisms (mitochondria impermeability, hydrolysis of ATP, the concentration of Ca2+, impaired calcium clearance, defective autophagy, apoptosis, and necrosis), and interlinked properties (adhesion, motility, and internalization dynamics, role in toxicity, surface hydrophilic and hydrophobicity, biokinetics and biomimetic behaviors of biochemical reactions) have also been summarized. SCoONPs have received a lot of interest among the nanocarriers family because of its advantageous qualities such as biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity. Conclusion: Various applications, such as bio-imaging, cell labeling, gene delivery, enhanced chemical stability, and increased biocompatibility, concerning apoptosis, necrosis, and nano-bio interfaces, along with suitable examples. In this analysis, the multi-functional cobalt [Co, CoO, Co2(CO)8 and Co3O4] nanoparticles (SCoNPs) intricacies (cytogenotoxicity, clastogenicity, and immunomodulatory), nanotoxicity, and associated repercussions have been highlighted and explained.

14.
Int J Biol Macromol ; 253(Pt 1): 126659, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37660856

ABSTRACT

Mucopermeating nanoformulations can enhance mucosal penetration of poorly soluble drugs at their target site. In this work, thiolated chitosan (TCS)-lithocholic acid (LA) nanomicelles loaded with ß-carotene, a safe phytochemical with anticancer properties, were designed to improve the pharmaceutical and pharmacological drug profile. The TCS-LA nanomicelles were characterized by FTIR to confirm the presence of the thiol group that favors skin adhesion, and to corroborate the conjugation of hydrophobic LA with hydrophilic CS to form an amphiphilic polymer derivative. Their crystalline nature and thermal behavior were investigated by XRD and DSC analyses, respectively. According to DLS and TEM, their average size was <300 nm, and their surface charge was +27.0 mV. ß-carotene entrapment and loading efficiencies were 64 % and 58 %, respectively. In vitro mucoadhesion and ex vivo mucopenetration analyses further corroborated the potential of the nanoformulation to deliver the drug in a sustained manner under conditions mimicking cancer micro-environment. Anticancer studies in mice demonstrated that the loaded nanomicelles delayed skin cancer growth, as revealed by both morphological and biochemical parameters. Based on the results obtained herein, it can be concluded that drug-loaded TCS-LA is a novel, stable, effective and safe mucoadhesive formulation of ß-carotene for the potential treatment of skin cancer.


Subject(s)
Chitosan , Nanoparticles , Skin Neoplasms , Mice , Animals , Chitosan/chemistry , beta Carotene , Polymers , Mucous Membrane , Skin Neoplasms/drug therapy , Nanoparticles/chemistry , Tumor Microenvironment
15.
Int J Biol Macromol ; 251: 126280, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37591420

ABSTRACT

Curcumin (CUR) is among the most natural and effective antitumor drugs for cancer treatment. These drugs have low solubility and short half-lives that reduce their effectiveness in drug release systems. Herein, a hydrogel nanocarrier containing chitosan (CS), alumina (γ-Al2O3), and carbon quantum dots (CQDs) was prepared by the water-in-oil-in-water (W/O/W) double nanoemulsion method. DLS revealed a nanocarrier size of 227 nm, with a zeta potential of -37.8 mV, which corroborates its stability. FE-SEM showed its quasi-spherical shape, FT-IR and XRD confirmed the presence of all the components in the nanocomposite and gave information about the intermolecular interactions between them and the crystalline nature of the nanocarrier, respectively. The drug loading (48 %) and entrapment efficiency (86 %) were higher than those reported previously for other CUR nanocarriers. The drug release profile revealed a controlled and stable release, and a pH-sensitive behavior, with faster CUR release in an acid environment. The breast cancer cell line was examined by cytotoxicity and cell apoptosis analyses. The results showed that the slow release over time and the programmed cell death were due to interactions between CUR and the nanocarrier. Considering the results obtained herein, CS/γAl2O3/CQDs/CUR can be considered as a promising new nanosystem for tumor treatment.

16.
Eur J Med Chem ; 259: 115676, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37499287

ABSTRACT

Etoposide (ETO), a popular anticancer drug that inhibits topoisomerase II enzymes, may be administered more effectively and efficiently due to nanomedicine. The therapeutic application of ETO is constrained by its limited solubility, weak absorption, and severe side effects. This article summarizes substantial progress made in the development of ETO nanomedicine for the treatment of cancer. It discusses various organic and inorganic nanostructures used to load or affix ETOs, such as lipids, liposomes, polymeric nanoparticles (NPs), dendrimers, micelles, gold NPs, iron oxide NPs, and silica NPs. In addition, it evaluates the structural properties of these nanostructures, such as their size, zeta potential, encapsulation efficiency, and drug release mechanism, as well as their in vitro or in vivo performance. The article also emphasizes the co-delivery of ETO with other medications or agents to produce synergistic effects or combat drug resistance in the treatment of cancer. It concludes with a discussion of the challenges and potential avenues for clinical translation of ETO nanomedicine.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Etoposide/pharmacology , Etoposide/therapeutic use , Nanomedicine , Antineoplastic Agents/chemistry , Liposomes/chemistry , Neoplasms/drug therapy , Drug Delivery Systems , Drug Carriers/chemistry , Nanoparticles/chemistry
17.
Drug Discov Today ; 28(9): 103673, 2023 09.
Article in English | MEDLINE | ID: mdl-37331691

ABSTRACT

Chronic wounds are ubiquitously inhabited by bacteria, and they remain a challenge as they cause significant discomfort and because their treatment consumes huge clinical resources. To reduce the burden that chronic wounds place upon both patients and health services, a wide variety of approaches have been devised and investigated. Bioinspired nanomaterials have shown great success in wound healing when compared to existing approaches, showing better ability to mimic natural extracellular matrix (ECM) components and thus to promote cell adhesion, proliferation, and differentiation. Wound dressings that are based on bioinspired nanomaterials can be engineered to promote anti-inflammatory mechanisms and to inhibit the formation of microbial biofilms. We consider the extensive potential of bioinspired nanomaterials in wound healing, revealing a scope beyond that covered previously.


Subject(s)
Anti-Infective Agents , Nanostructures , Humans , Wound Healing , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use
18.
Eur J Med Chem ; 258: 115547, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37327678

ABSTRACT

Nowadays, with the advent of cutting-edge technologies in the field of biotechnology, some highly advanced medical methods are introduced to treat cancers more efficiently. In the chemotherapy processes, anti-cancer drugs can be encapsulated in a stimuli-responsive coating which is capable of being functionalized by diverse ligands to increase the biocompatibility and control drug release behavior in a targeted drug delivery system. Nanoparticles (NPs) are playing an important role as nanocarriers in chemotherapy procedures, recently, numerous novel drug delivery systems have been studied which employed diverse types of NPs with remarkable structural features like porous nanocarriers with active and extended surface areas to enhance the drug loading and delivery efficacy. In this study, Daunorubicin (DAU) as an effective anti-cancer drug for treating various cancers introduced, and its application for novel drug delivery systems either as a single chemotherapy agent or co-delivery alongside other drugs with diverse NPs has been reviewed.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Daunorubicin/chemistry , Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Drug Delivery Systems , Neoplasms/drug therapy , Drug Carriers
20.
Environ Sci Pollut Res Int ; 30(31): 77385-77407, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37253914

ABSTRACT

Carbon nanotubes are among the elicitors that have different effects on plants. Basil as a useful and valuable plant has significant medicinal properties; The aim of this research is to study the effect of different concentrations of functionalized multi-walled carbon nanotubes with phenylalanine and non-functionalized in concentrations of (0, 50, 100, 150 and 200 mg.l-1) and activated carbon on total phenol and flavonoid content, antioxidant capacity, the content of H2O2, reactive oxygen species detection, antioxidant enzyme activity, and the concentration of volatile compounds of basil in the greenhouse culture, in an experiment in the form of a completely randomized design with three replications, and in the faculty of sciences of Urmia university's laboratory. The highest content of total phenol, flavonoid, anthocyanin, antioxidant capacity and hydrogen peroxide content were observed in the 200 mg.l-1 functionalized carbon nanotube. The highest percentage of alpha-Copaene, trans-alpha-Bergamotene, alpha-Guaiene, Bicyclogermacrene, 1,10-di-epi-Cubenol and alpha-Eudesmol compounds at 150 mg.l-1 of functionalized carbon nanotube and the highest percentage of compounds 1,8-cineole and eugenol was observed at 100 mg.l-1 of functionalized carbon nanotube. The compounds of linalool, camphor and anethole also showed their highest amount in treatments of 200, 150 and 50 mg.l-1 of carbon nanotube, respectively. In general, the observations of this research indicated that the use of functionalized carbon nanotubes as a stimulant has increased the antioxidant capacity of basil and on the other hand, it has led to an improving in the content of secondary metabolites.


Subject(s)
Nanotubes, Carbon , Ocimum basilicum , Antioxidants , Flavonoids , Hydrogen Peroxide , Phenols
SELECTION OF CITATIONS
SEARCH DETAIL