Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microrna ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39005129

ABSTRACT

Cancer, the second greatest cause of mortality worldwide, frequently causes bone me-tastases in patients with advanced-stage carcinomas such as prostate, breast, and lung cancer. The existence of these metastases contributes to the occurrence of skeletal-related events (SREs), which are defined by excessive pain, pathological fractures, hypercalcemia, and spinal cord com-pression. These injurious incidents leave uncomfortably large holes in each of the cancer patient's life quality. Primary bone cancers, including osteosarcoma (OS), chondrosarcoma (CS), and Ewing's sarcoma (ES), have unclear origins. MicroRNA (miRNA) expression patterns have been changed in primary bone cancers such as OS, CS, and ES, indicating a role in tumor development, invasion, metastasis, and treatment response. These miRNAs are persistent in circulation and ex-hibit distinct patterns in many forms of bone tumors, making them potential biomarkers for early detection and treatment of such diseases. Given their crucial regulatory functions in various bio-logical processes and conditions, including cancer, this study aims to look at miRNAs' activities and possible contributions to bone malignancies, focusing on OS, CS, and ES. In conclusion, miRNAs are valuable tools for diagnosing, monitoring, and predicting OS, CS, and ES outcomes. Further research is required to fully comprehend the intricate involvement of miRNAs in these bone cancers and to develop effective miRNA-based treatments.

2.
Iran J Biotechnol ; 22(1): e3612, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38827340

ABSTRACT

Background: Bacterial infection remains the most frequent complication of burn injury, which can lead to sepsis, even if antibiotics are used topically and systemically. Pseudomonas aeruginosa (P. aeruginosa) is the main causative agent in many cases. The emergence of antibiotic-resistant strains in recent years has increased the need to find novel alternative therapies, such as probiotics. Therefore, this study aimed to examine the antimicrobial properties of probiotic cell-free supernatant (CFS), along with the potential use of a chitosan scaffold both as an antimicrobial agent and as a carrier for the delivery of these complexes. Objective: Evaluation of the antimicrobial properties of cell-free soluble factors of probiotic bacteria both alone and in combination with chitosan scaffolds. Materials and Methods: Nine isolates of P. aeruginosa previously identified by standard diagnostic tests were investigated. The antimicrobial effects of probiotics in the form of Pedilact® oral drop which contained three probiotic strains, Kidilact® sachet, which contained seven probiotic strains, and strains of Lactobacillus casei (L. casei) and Lactobacillus acidophilus (L. acidophilus) isolated from yogurt were studied by an agar well diffusion assay and by using CFS harvested at various growth stages, without pH neutralization. Chitosan with different concentrations of glutaraldehyde (GA) as a crosslinking agent was fabricated to produce a suitable scaffold for loading cell-free supernatants of probiotic strains. The scaffolds were then characterized using scanning electron microscopy. The antimicrobial properties of the CFS, chitosan, and chitosan scaffolds loaded with CFS were analyzed against MDR P. aeruginosa. Results: In the agar well diffusion assay, CFS obtained from probiotic strains effectively inhibited the growth of a clinical strain of P. aeruginosa. This effect was observed when CFS was assessed without pH neutralization. Kidilact® was the most promising synbiotic formulation based on its inhibitory activity. The chitosan scaffold was successfully fabricated, as shown by SEM, and its structure was not affected by acidic CFS. The fabricated scaffolds were able to deliver CFS and, interestingly, antibacterial activity against P. aeruginosa when CFS was loaded on the chitosan scaffold was enhanced significantly. Conclusion: The results of this study showed chitosan scaffold loaded with cell-free probiotics metabolites can be considered to be a promising antimicrobial dressing in wound healing applications.

3.
Am J Stem Cells ; 13(2): 87-100, 2024.
Article in English | MEDLINE | ID: mdl-38765803

ABSTRACT

Diabetes mellitus (DM) is a significant public health problem and is one of the most challenging medical conditions worldwide. It is the severe complications that make this disease more intricate. A diabetic wound is one of these complications. Patients with diabetes are at higher risk of developing diabetic foot ulcers (DFU). Due to the ineffectiveness of Conventional treatments, growth in limb amputation, morbidity, and mortality have been recognized, which indicates the need for additional treatment. Mesenchymal stem cells (MSCs) can significantly improve wound healing. However, there are some risks related to stem cell therapy. Exosome therapy is a new treatment option for diabetic wounds that has shown promising results. However, an even more advanced form called cell-free therapy using exosomes has emerged. This upgraded version of stem cell therapy offers improved efficacy and eliminates the risk of cancer progression. Exosome therapy promotes wound healing from multiple angles, unlike traditional methods that primarily rely on the body's self-healing ability and only provide wound protection. Therefore, exosome therapy has the potential to replace conventional treatments effectively. However, further research is necessary to distinguish the optimal type of stem cells for therapy, ensure their safety, establish appropriate dosing, and identify the best management trail. The present study focused on the current literature on diabetic wound ulcers, their treatment, and mesenchymal stem cell and exosome therapy potential in DFU.

4.
J Transl Med ; 22(1): 435, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720379

ABSTRACT

Diabetes mellitus is a significant global public health challenge, with a rising prevalence and associated morbidity and mortality. Cell therapy has evolved over time and holds great potential in diabetes treatment. In the present review, we discussed the recent progresses in cell-based therapies for diabetes that provides an overview of islet and stem cell transplantation technologies used in clinical settings, highlighting their strengths and limitations. We also discussed immunomodulatory strategies employed in cell therapies. Therefore, this review highlights key progresses that pave the way to design transformative treatments to improve the life quality among diabetic patients.


Subject(s)
Cell- and Tissue-Based Therapy , Diabetes Mellitus , Stem Cell Transplantation , Humans , Diabetes Mellitus/therapy , Cell- and Tissue-Based Therapy/methods , Islets of Langerhans Transplantation , Animals
5.
Curr Pharm Des ; 30(21): 1667-1680, 2024.
Article in English | MEDLINE | ID: mdl-38738725

ABSTRACT

Cardiovascular diseases place a considerable burden on global health systems, contributing to high rates of morbidity and mortality. Current approaches to detecting and treating Cardiovascular Diseases (CVD) often focus on symptomatic management and are initiated after the disease has progressed. Personalized medicine, which tailors medical interventions to individual characteristics, has emerged as a promising strategy for improving cardiovascular health outcomes. This article provides an overview of personalized medicine in the context of CVD, with a specific emphasis on FDA-approved interventions. It explores the potential benefits, challenges, and future directions of personalized medicine in cardiovascular disorders. By reviewing the advancements in this field, this article underscores the importance of early detection, intervention, and innovative treatment options in reducing the impact of CVD on individuals and society.


Subject(s)
Cardiovascular Diseases , Pharmacogenetics , Precision Medicine , United States Food and Drug Administration , Humans , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , United States
6.
Mol Biol Rep ; 51(1): 459, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551743

ABSTRACT

Hepatitis is a significant global public health concern, with viral infections being the most common cause of liver inflammation. Antiviral medications are the primary treatments used to suppress the virus and prevent liver damage. However, the high cost of these drugs and the lack of awareness and stigma surrounding the disease create challenges in managing hepatitis. Stem cell therapy has arisen as a promising therapeutic strategy for hepatitis by virtue of its regenerative and immunomodulatory characteristics. Stem cells have the exceptional capacity to develop into numerous cell types and facilitate tissue regeneration, rendering them a highly promising therapeutic avenue for hepatitis. In animal models, stem cell therapy has demonstrated worthy results by reducing liver inflammation and improving liver function. Furthermore, clinical trials have been undertaken to assess the safety and effectiveness of stem cell therapy in individuals with hepatitis. This review aims to explore the involvement of stem cells in treating hepatitis and highlight the findings from studies conducted on both animals and humans. The objective of this review is to primarily concentrate on the ongoing and future clinical trials that assess the application of stem cell therapy in the context of hepatitis, including the transplantation of autologous bone marrow-derived stem cells, human induced pluripotent stem cells, and other mesenchymal stem cells. In addition, this review will explore the potential merits and constraints linked to stem cell therapy for hepatitis, as well as its prospective implications in the management of this disease.


Subject(s)
Hepatitis , Induced Pluripotent Stem Cells , Mesenchymal Stem Cell Transplantation , Animals , Humans , Prospective Studies , Mesenchymal Stem Cell Transplantation/methods , Inflammation
7.
Stem Cell Rev Rep ; 20(5): 1200-1212, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38430362

ABSTRACT

Epidermolysis bullosa (EB) is a rare genetic dermatosis characterized by skin fragility and blister formation. With a wide phenotypic spectrum and potential extracutaneous manifestations, EB poses significant morbidity and mortality risks. Currently classified into four main subtypes based on the level of skin cleavage, EB is caused by genetic mutations affecting proteins crucial for maintaining skin integrity. The management of EB primarily focuses on preventing complications and treating symptoms through wound care, pain management, and other supportive measures. However, recent advancements in the fields of stem cell therapy, tissue engineering, and gene therapy have shown promise as potential treatments for EB. Stem cells capable of differentiating into skin cells, have demonstrated positive outcomes in preclinical and early clinical trials by promoting wound healing and reducing inflammation. Gene therapy, on the other hand, aims to correct the underlying genetic defects responsible for EB by introducing functional copies of mutated genes or modifying existing genes to restore protein function. Particularly for severe subtypes like Recessive Dystrophic Epidermolysis Bullosa (RDEB), gene therapy holds significant potential. This review aims to evaluate the role of new therapeutic approaches in the treatment of EB. The review includes findings from studies conducted on humans. While early studies and clinical trials have shown promising results, further research and trials are necessary to establish the safety and efficacy of these innovative approaches for EB treatment.


Subject(s)
Epidermolysis Bullosa , Genetic Therapy , Stem Cell Transplantation , Humans , Epidermolysis Bullosa/therapy , Epidermolysis Bullosa/genetics , Epidermolysis Bullosa/pathology , Animals , Cell- and Tissue-Based Therapy/methods , Stem Cells/cytology , Stem Cells/metabolism
8.
Avicenna J Phytomed ; 13(6): 615-625, 2023.
Article in English | MEDLINE | ID: mdl-38106627

ABSTRACT

Objective: Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes with no consumption of alcohol. Recently, curcumin is a natural polyphenol found in turmeric has been examined for the treatment of NAFLD. This study aimed to assess the efficacy of 160 mg/day nano-micelle curcumin on the amelioration of NAFLD by measuring liver enzymes. Materials and Methods: Patients with NAFLD were randomly divided into curcumin (intervention group n=33) and placebo (n=33) groups and at the end of the study, the data of 56 participants who completed the 2-month intervention were analyzed. Laboratory tests and questionnaires were used to gather information. Both groups received recommendations for lifestyle modification, and were advised to other necessary advices. Patients in the curcumin group received 160 mg/day of nano-micelle curcumin in two divided doses for 60 days. The 2 groups were followed up for two months and clinical and laboratory indices were compared. Results: Our data showed a significant decrease in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the curcumin group (p<0.01) as well as a significant difference between the groups before and after the intervention in curcumin group (p<0.05). Interestingly, a meaningful decrease in AST serum level was observed in the intervention group (p<0.01). Conclusion: Our study demonstrated that short-term supplementation with nano-micelle curcumin results in the reduction of AST and ALT and is beneficial for the treatment of NAFLD.

SELECTION OF CITATIONS
SEARCH DETAIL