Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(14): 16262-16278, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617664

ABSTRACT

Phosphodiesterases (PDEs) are vital in signal transduction, specifically by hydrolyzing cAMP and cGMP. Within the PDE family, PDE10A is notable for its prominence in the striatum and its regulatory function over neurotransmitters in medium-spiny neurons. Given the dopamine deficiency in Parkinson's disease (PD) that affects striatal pathways, PDE10A inhibitors could offer therapeutic benefits by modulating D1 and D2 receptor signaling. This study was motivated by the successful history of quinazoline/quinazoline scaffolds in the inhibition of PDE10A. This study involved detailed in silico evaluations through docking followed by pharmacological, pharmacophoric, and pharmacokinetic analyses, prioritizing central nervous system (CNS)-active drug criteria. Seven cyclic peptides, those featuring the quinazoline/quinazoline moiety at both termini, exhibited notably enhanced docking scores compared to those of the remaining alkaloids within the screened library. We identified 7 quinolines and 1 quinazoline including Lepadin G, Aspernigerin, CJ-13536, Aurachin A, 2-Undecyl-4(1H)-quinolone, Huajiaosimuline 3-Prenyl-4-prenyloxyquinolin-2-one, and Isaindigotone that followed the standard CNS active drug criteria. The dominant quinoline ring in our study and its related quinazoline were central to our evaluations; therefore, the pharmacophoric features of these scaffolds were highlighted. The top alkaloids met all CNS-active drug properties; while nonmutagenic and without PAINS alerts, many indicated potential hepatotoxicity. Among the compounds, Huajiaosimuline was particularly significant due to its alignment with lead-likeness and CNS-active criteria. Aspernigerin demonstrated its affinity for numerous dopamine receptors, which signifies its potential to alter dopaminergic neurotransmission that is directly related to PD. Interestingly, the majority of these alkaloids had biological targets primarily associated with G protein-coupled receptors, critical in PD pathophysiology. They exhibit superior excretion parameters and toxicity end-points compared to the standard. Notably, selected alkaloids demonstrated stability in the binding pocket of PDE10A according to the molecular dynamic simulation results. Our findings emphasize the potential of these alkaloids as PDE10A inhibitors. Further experimental studies may be necessary to confirm their actual potency in inhibiting PDE10A before exploring their therapeutic potential in PD.

2.
Eur J Med Chem ; 271: 116398, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38614061

ABSTRACT

In contemporary studies, the predominant utilization of C60 derivatives pertains to their role as photosensitizers or agents that scavenge free radicals. The intriguing coexistence of these divergent functionalities has prompted extensive investigation into water-soluble fullerenes. The photodynamic properties of these compounds find practical applications in DNA cleavage, antitumor interventions, and antibacterial endeavors. Consequently, photodynamic therapy is progressively emerging as a pivotal therapeutic modality within the biomedical domain, owing to its notable levels of safety and efficacy. The essential components of photodynamic therapy encompass light of the suitable wavelength, oxygen, and a photosensitizer, wherein the reactive oxygen species generated by the photosensitizer play a pivotal role in the therapeutic mechanism. The remarkable ability of fullerenes to generate singlet oxygen has garnered significant attention from scholars worldwide. Nevertheless, the limited permeability of fullerenes across cell membranes owing to their low water solubility necessitates their modification to enhance their efficacy and utilization. This paper reviews the applications of fullerene derivatives as photosensitizers in antitumor and antibacterial fields for the recent years.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Fullerenes , Photochemotherapy , Photosensitizing Agents , Fullerenes/chemistry , Fullerenes/pharmacology , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Animals , Molecular Structure , Neoplasms/drug therapy
3.
J Exp Bot ; 75(10): 3026-3039, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38318854

ABSTRACT

Grape white rot is a devastating fungal disease caused by Coniella diplodiella. The pathogen delivers effectors into the host cell that target crucial immune components to facilitate its infection. Here, we examined a secreted effector of C. diplodiella, known as CdE1, which has been found to inhibit Bax-triggered cell death in Nicotiana benthamiana plants. The expression of CdE1 was induced at 12-48 h after inoculation with C. diplodiella, and the transient overexpression of CdE1 led to increased susceptibility of grapevine to the fungus. Subsequent experiments revealed an interaction between CdE1 and Vitis davidii cysteine-rich receptor-like kinase 10 (VdCRK10) and suppression of VdCRK10-mediated immunity against C. diplodiella, partially by decreasing the accumulation of VdCRK10 protein. Furthermore, our investigation revealed that CRK10 expression was significantly higher and was up-regulated in the resistant wild grapevine V. davidii during C. diplodiella infection. The activity of the VdCRK10 promoter is induced by C. diplodiella and is higher than that of Vitis vitifera VvCRK10, indicating the involvement of transcriptional regulation in CRK10 gene expression. Taken together, our results highlight the potential of VdCRK10 as a resistant gene for enhancing white rot resistance in grapevine.


Subject(s)
Disease Resistance , Plant Diseases , Plant Proteins , Vitis , Vitis/genetics , Vitis/microbiology , Vitis/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hypocreales/physiology , Gene Expression Regulation, Plant , Protein Kinases/genetics , Protein Kinases/metabolism
4.
Eur J Med Chem ; 258: 115536, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37295260

ABSTRACT

ONS donor ligands L1-L4 were utilized in the preparation of monofunctional dimetallic Ru(η6-arene) complexes (C1-C4). These ONS donor ligand based novel tricoordinated Ru(II) complexes bearing η6-arene co-ligand were prepared for the first time. The current methodology resulted in excellent isolated yields and these complexes were characterized in detail by different spectroscopic and spectrometric techniques. The structures of C1-C2 and C4 were characterized in solid state by single crystal X-ray analysis. The in vitro anticancer analyses showed these novel complexes suppressed the growth of breast (MCF-7), liver (HepG2) and lung (A549) cancer cells. C2 suppressed the growth of these cells in dose-dependent manner revealed form the MTT and crystal violet cell viability assays. Moreover, C2 was observed the most potent complex that was used further in detailed mechanistic analyses in cancer cells. C2 showed good cytotoxic activity at 10 µM dose level as compared to cisplatin or oxaliplatin in these cancer cells. We observed morphological changes in cancer cells upon treatment with C2. Moreover, C2 suppressed the invasion and migration ability of cancer cells. C2 induced cellular senescence to retard cell growth and suppressed the formation of cancer stem cells. Importantly, C2 showed synergistic anticancer effect in combination with cisplatin and Vitamin C to further inhibit cell growth which suggested the potential role of C2 in cancer therapy. Mechanistically, C2 inhibited NOTCH1 dependent signaling pathway to suppress cancer cell invasion, migration and cancer stem cells formation. Thus, these data suggested potential role of C2 in cancer therapy by targeting NOTCH1-dependent signaling to suppress tumorigenesis. The results obtained in this study for these novel monofunctional dimetallic Ru(η6-arene) complexes showed their high anticancer potency and this study will pave to further cytotoxicity exploration on this class of complexes.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Cisplatin/pharmacology , Ascorbic Acid/pharmacology , Ligands , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Signal Transduction , Ruthenium/pharmacology , Ruthenium/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor
5.
Hortic Res ; 10(5): uhad063, 2023 May.
Article in English | MEDLINE | ID: mdl-37249950

ABSTRACT

Grape white rot, a devastating disease of grapevines caused by Coniella diplodiella (Speg.) Sacc., leads to significant yield losses in grape. Breeding grape cultivars resistant to white rot is essential to reduce the regular use of chemical treatments. In recent years, Chinese grape species have gained more attention for grape breeding due to their high tolerance to various biotic and abiotic factors along with changing climatic conditions. In this study, we employed whole-genome resequencing (WGR) to genotype the parents of 'Manicure Finger' (Vitis vinifera, female) and '0940' (Vitis davidii, male), along with 101 F1 mapping population individuals, thereby constructing a linkage genetic map. The linkage map contained 9337 single-nucleotide polymorphism (SNP) markers with an average marker distance of 0.3 cM. After 3 years of phenotypic evaluation of the progeny for white rot resistance, we confirmed one stable quantitative trait locus (QTL) for white rot resistance on chromosome 3, explaining up to 17.9% of the phenotypic variation. For this locus, we used RNA-seq to detect candidate gene expression and identified PR1 as a candidate gene involved in white rot resistance. Finally, we demonstrated that recombinant PR1 protein could inhibit the growth of C. diplodiella and that overexpression of PR1 in susceptible V. vinifera increased grape resistance to the pathogen.

6.
Eur J Med Chem ; 249: 115164, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36758451

ABSTRACT

Oligosaccharides are the ubiquitous molecules of life. In order to translate human bioglycosylation into clinical applications, homogeneous samples of oligosaccharides and glycoconjugates can be obtained by chemical, enzymatic or other biological methods for systematic studies. However, the structural complexity and diversity of glycans and their conjugates present a major challenge for the synthesis of such molecules. This review summarizes the chemical synthesis methods of oligosaccharides, the application of oligosaccharides in the field of medicinal chemistry according to their related biological activities, and shows the great prospect of oligosaccharides in the field of pharmaceutical chemistry.


Subject(s)
Oligosaccharides , Polysaccharides , Humans , Glycosylation , Oligosaccharides/chemistry , Glycoconjugates/chemistry , Chemistry, Pharmaceutical
7.
Eur J Med Chem ; 245(Pt 1): 114892, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36334326

ABSTRACT

Cistanche deserticola is a traditional and precious Chinese herbal medicine, known as "desert ginseng", with anti-inflammatory, anti-oxidant, improving immunity, nourishing the kidneys and other pharmacological effects. Its chemical components mainly include phenylethanol glycosides, iridoids, polysaccharides and volatile components, among which polysaccharides have received extensive attention due to their biological activities such as regulating immune activity, anti-aging, anti-spleen deficiency and antitumor. In recent years, a large number of research have been carried out on the extraction and isolation, chemical structure analysis and biological activity of Cistanche deserticola polysaccharides. The methods of polysaccharide extraction mainly include traditional extraction method, ultrasonic assisted method, microwave assisted method and enzyme assisted method, etc. The extracted polysaccharides were analyzed by chemical methods including methylation, acid hydrolysis and Smith degradation and spectroscopy methods such as NMR and IR. A variety of polysaccharides with new structures were obtained, and some polysaccharides with known structures were also investigated for their biological activities and their structure-activity relationships. However, the relationship between polysaccharides structure and their biological activities is still unclear due to the large number of polysaccharide components, their complex structures and the lack of systematic research and analysis on them. It is expected that the subsequent study of polysaccharide structure and active conformational relationship will be highly valuable for the application of Cistanche deserticola in pharmaceutical sciences and health food.


Subject(s)
Cistanche , Drugs, Chinese Herbal , Polysaccharides , Cistanche/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology
8.
Front Genet ; 13: 1033288, 2022.
Article in English | MEDLINE | ID: mdl-36338979

ABSTRACT

Salicylic acid (SA) is a well-studied phenolic plant hormone that plays an important role in plant defense against the hemi-biothrophic and biothrophic pathogens and depends on the living cells of host for the successful infection. In this study, a pathogenesis test was performed between Vitis davidii and V. vinifera cultivars against grape white rot disease (Coniella diplodiella). V. davidii was found to be resistant against this disease. SA contents were found to be higher in the resistant grape cultivar after different time points. RNA-seq analysis was conducted on susceptible grapevine cultivars after 12, 24, and 48 h of SA application with the hypothesis that SA may induce defense genes in susceptible cultivars. A total of 511 differentially expressed genes (DEGs) were identified from the RNA-seq data, including some important genes, VvWRKY1/2, VvNPR1, VvTGA2, and VvPR1, for the SA defense pathway. DEGs related to phytohormone signal transduction and flavonoid biosynthetic pathways were also upregulated. The quantitative real-time PCR (qRT-PCR) results of the significantly expressed transcripts were found to be consistent with the transcriptome data, with a high correlation between the two analyses. The pathogenesis-related gene 1 (VvPR1), which is an important marker gene for plant defense, was selected for further promoter analysis. The promoter sequence showed that it contains some important cis-elements (W-box, LS7, as-1, and TCA-element) to recruit the transcription factors VvWRKY, VvNPR1, and VvTGA2 to express the VvPR1 gene in response to SA treatment. Furthermore, the VvPR1 promoter was serially deleted into different fragments (-1,837, -1,443, -1,119, -864, -558, -436, and -192 ) bp and constructed vectors with the GUS reporter gene. Deletion analysis revealed that the VvPR1 promoter between -1837 bp to -558 bp induced significant GUS expression with respect to the control. On the basis of these results, the -558 bp region was assumed to be an important part of the VvPR1 promoter, and this region contained the important cis-elements related to SA, such as TCA-element (-1,472 bp), LS7 (-1,428 bp), and as-1 (-520 bp), that recruit the TFs and induce the expression of the VvPR1 gene. This study expanded the available information regarding SA-induced defense in susceptible grapes and recognized the molecular mechanisms through which this defense might be mediated.

9.
Fish Shellfish Immunol ; 131: 1-9, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36154890

ABSTRACT

Bacteria of the Arcobacter-like spp. represent emerging foodborne zoonotic pathogens in humans and animals. Their increasing presence in seafood, suggesting higher occurrence in seawater due to marine pollution, is raising some environmental concern. Although Arcobacter is frequently detected in diseased oysters and stressed bivalve species, no data are available so far on its potential pathogenicity or interactions with the immune system of the bivalve host. In this work, responses to challenge with two strains of Malaciobacter marinus IRTA-19-131 and IRTA-19-132, R1 and R2), isolated from adult Crassostrea gigas during a mortality event in 2019 in Spain, were investigated in the mussel Mytilus galloprovincialis. In vivo experiments were performed in larvae (48 h post-fertilization), and in adult mussels at 24 h post-injection, in order to evaluate the pathogenicity for early developmental stages, and the hemolymph immune responses, respectively. Both R1 and R2 were moderately pathogenic to early larvae, with significant decreases in the development of normal D-veligers from 104 and 103 CFU/mL, respectively. In adults, both strains decreased hemocyte lysosomal membrane stability (LMS), and stimulated extracellular defense responses (ROS production and lysozyme activity). The interactions between mussel hemocytes and M. marinus were investigated in in vitro short-term experiments (30-90 min) using the R1 strain (106-108 CFU/mL). R1 decreased LMS and induced lysosomal enlargement, but not cell detachment or death, and stimulated extracellular ROS production and lysozyme release, confirming in vivo data. Moreover, lysosomal internalization and degradation of bacteria were observed, together with changes in levels of activated mTor and LC3, indicating phagocytic activity. Overall, the results indicate the activation of both extracellular and intracellular immune defenses against M. marinus R1. Accordingly, these responses resulted in a significant hemolymph bactericidal activity, with a large contribution of hemolymph serum. The results represent the first data on the potential pathogenicity of Arcobacter isolated from a shellfish mortality to bivalve larvae and adults, and on their interactions with the immune system of the host.


Subject(s)
Arcobacter , Mytilus , Humans , Animals , Muramidase/metabolism , Arcobacter/metabolism , Reactive Oxygen Species/metabolism , Hemocytes , Bacteria/metabolism
10.
Metallomics ; 14(8)2022 08 08.
Article in English | MEDLINE | ID: mdl-35876659

ABSTRACT

Vitamin B6 is an essential vitamin that serves as a co-enzyme in a number of enzymatic reactions in metabolism of lipids, amino acids, and glucose. In the current study, we synthesized vitamin B6 derived ligand (L) and its complex Pt(L)Cl (C1). The ancillary chloride ligand of C1 was exchanged with pyridine co-ligand and another complex Pt(L)(py).BF4 (C2) was obtained. Both these complexes were obtained in excellent isolated yields and characterized thoroughly by different analytical methods. Thyroid cancer is one of the most common malignancies of the endocrine system, we studied the in vitro anticancer activity and mechanism of these vitamin B6 derived L and Pt(II) complexes in thyroid cancer cell line (FTC). Based on MTT assay, cell proliferation rate was reduced in a dose-dependent manner. According to apoptosis analysis, vitamin B6 based Pt(II) complexes treated cells depicted necrotic effect and TUNEL based apoptosis was observed in cancer cells. Furthermore, qRT-PCR analyses of cancer cells treated with C1 and/or C2 showed regulated expression of anti-apoptotic, pro-apoptosis and autophagy related genes. Western blot results demonstrated that C1 and C2 induced the activation of p53 and the cleavage of Poly (ADP-ribose) polymerase (PARP). These results suggest that these complexes inhibit the growth of FTC cells and induce apoptosis through p53 signaling. Thus, vitamin B6 derived Pt(II) complexes C1 and C2 may be potential cytotoxic agents for the treatment of thyroid cancer.


Subject(s)
Antineoplastic Agents , Thyroid Neoplasms , Antineoplastic Agents/chemistry , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cytotoxins , Humans , Ligands , Thyroid Neoplasms/drug therapy , Tumor Suppressor Protein p53/metabolism , Vitamin B 6/pharmacology
11.
Plants (Basel) ; 11(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35736691

ABSTRACT

Methyl jasmonate (MeJA) plays a vital role in plant disease resistance and also induces the expression of disease resistance genes in plants. In this study, a transcriptome analysis was performed on grapevine leaves after 12, 24 and 48 h of MeJA-100 µM treatment. A total of 1242 differentially expressed genes (DEGs) were identified from the transcriptome data, and the analysis of the DEGs showed that genes related to phytohormone signal transduction, jasmonic acid-mediated defense, Mitogen-activated protein kinase (MAPK), and flavonoid biosynthetic pathways were upregulated. As Pathogenesis-related gene 1 (PR1) is an important marker gene in plant defense also upregulated by MeJA treatment in RNA-seq data, the VvPR1 gene was selected for a promoter analysis with ß-glucuronidase (GUS) through transient expression in tobacco leaves against abiotic stress. The results showed that the region from -1837 bp to -558 bp of the VvPR1 promoter is the key region in response to hormone and wound stress. In this study, we extended the available knowledge about induced defense by MeJA in a grapevine species that is susceptible to different diseases and identified the molecular mechanisms by which this defense might be mediated.

12.
Angew Chem Int Ed Engl ; 61(29): e202205534, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35488890

ABSTRACT

A water-soluble cavitand bearing a benzotriazole upper rim was prepared and characterized. It exists as a dimeric velcraplex in D2 O, but forms host-guest complexes with hydrophobic and amphiphilic guests. Alkanes (C5 to C10), cyclic ketones (C6-C10), cyclic alcohols (C6-C8) and various amphiphilic guests form 1 : 1 cavitand complexes. A cyclic array of hydrogen bonds, bridged by solvent/water (D2 O) molecules, stabilizes the vase conformation of the complexes. With longer alkanes (C12-C15), symmetrical dialkyl amine, urea and phosphate, 2 : 1 host:guest capsules are formed. Computations indicate that additional waters on the upper rim create a self-complementary hydrogen-bonding pattern for capsule formation.


Subject(s)
Alkanes , Water , Alkanes/chemistry , Ethers, Cyclic , Models, Molecular , Resorcinols , Triazoles , Water/chemistry
13.
Eur J Med Chem ; 227: 113920, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34742012

ABSTRACT

Cancer is one of the most aggressive diseases with poor prognosis and survival rates. Lipids biogenesis play key role in cancer progression, metastasis and tumor development. Suppression of SREBP-mediated lipid biogenesis pathway has been linked with cancer inhibition. Platinum complexes bearing good anticancer effect and multiple genes activation properties are considered important and increase the chances for development of new platinum-based drugs. In this study, we synthesized pyridine co-ligand functionalized cationic complexes and characterized them using multiple spectroscopic and spectrophotometric methods. Two of these complexes were studied in solid state by single crystal X-ray analysis. The stability of these complexes were measured in solution state using 1H NMR methods. These complexes were further investigated for their anticancer activity against human breast, lung and liver cancer cells. MTT assay showed potential cytotoxic activity in dose-dependent manner and decrease survival rates of cancer cells was observed upon treatment with these complexes. Biological assays results revealed higher cytotoxicity as compared to cisplatin and oxaliplatin. Further we studied C2, C6 and C8 in detailed mechanistic anticancer analyses. Clonogenic assay showed decrease survival of MCF-7, HepG2 and A549 cancer cells treated with C2, C6 and C8 as compared to control cells treated with DMSO. TUNEL assay showed more cell death, these complexes suppressed invasion and migration ability of cancer cells and decreased tumor spheroids formation, thus suggesting a potential role in inhibition of cancer metastasis and cancer stem cells formation. Mechanistically, these complexes inhibited sterol regulatory element-binding protein 1 (SREBP-1) expression in cancer cells in dose-dependent manner and thereby reduced lipid biogenesis to suppress cancer progression. Furthermore, expression level was decreased for the key genes LDLR, FASN and HMGCR, those required for sterol biosynthesis. Taken together, these complexes suppressed cancer cell growth, migration, invasion and spheroids formation by inhibiting SREBP-1 mediated lipid biogenesis pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Organoplatinum Compounds/pharmacology , Sterol Regulatory Element Binding Protein 1/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Lipid Metabolism/drug effects , Molecular Structure , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry , Sterol Regulatory Element Binding Protein 1/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
14.
Braz. arch. biol. technol ; 65: e22210213, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1364438

ABSTRACT

Abstract This study was performed to screen out the various species of 'Cucurbitaceae' family, musk melon (Kalash and Durga), bottle gourd (Crystal Long and Nuefield) and squash (Green Round, and Squash Malika) against the salt stress. All genotypes were treated with five different levels of NaCl (T0 = control, T1 = 1.5 dS m-1, T2 = 3.0 dS m-1, T3 = 4.5 dS m-1 and T4 = 6.0 dS m-1) and half strength of Hoagland's nutrients solution as the base nutrient solution. Results showed that the bottle gourd varieties "Nuefield" and "Crystal Long" performed best by maintaining the highest germination (93.2% and 85.6%), number of leaves per plant (4.5 and 5.7), shoot length (16.84 cm and 16.14 cm), root length (13.48 cm and 13.00 cm), plant fresh weight (942.2 g and 918.6 g), plant dry weight (118.4 g and 107.5 g), leaf area (171.2 cm2 and 169.1 cm2), chlorophyll content (3.5 μg/cm-2 and 3.4 μg/cm-2) with low chloride (1.57 ppm and 1.59 ppm) and sodium content (0.47 ppm and 0.51 ppm) under salt stress followed by varieties of Squash (Green Round, and Squash Malika) and musk melon (Kalash and Durga). It was also found that a higher level of salinity (4.5 dS m-1 and 6.0 dS m-1) has more adverse effects on the performance of all selected genotypes. Conclusively, it can be recommended that as compared to all tested species, bottle gourd varieties "Nuefield" and "Crystal Long" have the ability to withstand against salinity stress and should be planted under salt stress conditions.

15.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34884616

ABSTRACT

Topoisomerase IIIß (Top3ß), the only dual-activity topoisomerase in mammals that can change topology of both DNA and RNA, is known to be associated with neurodevelopment and mental dysfunction in humans. However, there is no report showing clear associations of Top3ß with neuropsychiatric phenotypes in mice. Here, we investigated the effect of Top3ß on neuro-behavior using newly generated Top3ß deficient (Top3ß-/-) mice. We found that Top3ß-/- mice showed decreased anxiety and depression-like behaviors. The lack of Top3ß was also associated with changes in circadian rhythm. In addition, a clear expression of Top3ß was demonstrated in the central nervous system of mice. Positron emission tomography/computed tomography (PET/CT) analysis revealed significantly altered connectivity between many brain regions in Top3ß-/- mice, including the connectivity between the olfactory bulb and the cerebellum, the connectivity between the amygdala and the olfactory bulb, and the connectivity between the globus pallidus and the optic nerve. These connectivity alterations in brain regions are known to be linked to neurodevelopmental as well as psychiatric and behavioral disorders in humans. Therefore, we conclude that Top3ß is essential for normal brain function and behavior in mice and that Top3ß could be an interesting target to study neuropsychiatric disorders in humans.


Subject(s)
Anxiety Disorders/pathology , Behavior, Animal , Circadian Rhythm , Connectome , DNA Topoisomerases, Type I/physiology , Depression/pathology , Animals , Anxiety Disorders/etiology , Depression/etiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout
16.
Phys Chem Chem Phys ; 23(35): 19647-19658, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34524297

ABSTRACT

The chalcogen-bonded homo-cavitand and hetero-cavitand AY+AY' capsules (Y, Y' = Se, Te), as well as their encapsulated complexes with one or two guest molecules have been studied theoretically via density functional theory (DFT), while the 1H NMR spectra of the homo-cavitand encapsulated complexes (in ASe+ASe) have been measured experimentally. There is excellent agreement between theoretical and experimental spectra. In all cases, we found significant 1H upfield shifts which are more intense in the ASe+ASe cage compared to the ATe+ATe and ASe+ATe cages. The non-uniform electron distribution which gives rise to an inherent electric field and a non-zero electric dipole moment of the encapsulated complexes, the induced electric field effects, the magnetic anisotropy which is enhanced due to the polarizability of chalcogen atoms, and the peripheral chains, which are responsible for the solubility of the cages, increase the upfield shifts of 1H of the encapsulated molecules; the peripheral chains lead to an increase of the upfield shifts by up to 1.8 ppm for H of the rim and up to 1.2 ppm for the terminal H in the interior of the cage. Hence, substantial 1H upfield chemical shifts of the guests in these capsules are consequences of (i) the enhanced aromaticity of the walls of the capsules due to the polarizability of chalcogen atoms, (ii) the induced and inherent electric field effects, and (iii) the peripheral chains.

17.
Eur J Med Chem ; 224: 113689, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34293698

ABSTRACT

Triple-negative-breast cancer (TNBC) and HER-2 enriched positive aggressive types of breast cancer and are highly metastatic in nature. Anticancer agents those target TNBC and HER-2 enriched positive breast cancers are considered important in the field of breast cancer research. In search of the effective anticancer agents, we synthesized Pt(II) complexes to target these cancers. Platinum complexes (C1-C8) were prepared in single step by the reaction of commercially available K2PtCl4 with the readily prepared ligands (L1-L8). All these compounds were characterized successfully by different spectroscopic and spectrophotometric analyses. Structures of C1, C3 and C8 were characterized by single crystal X-ray analysis that confirmed the exact chelation mode of the SNO-triply coordinated ligand. All these complexes inhibited the in vitro growth of MCF-7 (luminal-like), MDA-MB-231 (TNBC) and SKBR3 (HER-2 enriched) breast cancer cells. C1, C3 and C7 induced cell death and suppressed the clonogenic potential of these cancer cells. Importantly, C1, C3 and C7 showed potentials to suppress cancer stem cells/mammosphere formation and cell migration ability of MDA-MB-231 and SKBR3 breast cancer cells. These complexes also induced cellular senescence in MDA-MB-231 and SKBR3 cells, thus suggesting a cell retardation mechanism. Similarly, these complexes induced DNA damage by activating p-H2AX expression and promoted autophagy via ATG3/LC3B axis activation in MDA-MB-231 and SKBR3 cells. Furthermore, these complexes decreased the expression of oncogenic proteins such as BCL2 and cylin-D1 those are involved in cancer cell survival and cell cycle progression. To further gain insight, we found that C1 and C7 targeted glycolytic pathways by regulating PKM and LDHA expression, which are involved in glycolysis. Moreover, C1 and C7 suppressed the formation of ATP production that is required for cancer cell growth. Taken together, the easy synthesis and biological assays results point towards the importance of these complexes in MDA-MB-231 (TNBC) and SKBR3 (HER-2 enriched) breast cancer cells by targeting multiple signaling pathways those are considered important during breast cancer progression. This study produces bases for further deeper in vitro or in vivo study that could lead to the effective breast cancer agents which we are working on.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Platinum/chemistry , Signal Transduction/drug effects , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Autophagy-Related Proteins/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cellular Senescence/drug effects , Coordination Complexes/pharmacology , Cyclin D1/metabolism , Humans , L-Lactate Dehydrogenase/metabolism , Molecular Conformation , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyruvate Kinase/metabolism , Receptor, ErbB-2/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Ubiquitin-Conjugating Enzymes/metabolism
18.
J Am Chem Soc ; 143(31): 12397-12403, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34328320

ABSTRACT

The cation-π interaction and the hydrophobic effect are important intermolecular forces in chemistry and play major roles in controlling recognition in biological systems. We compared their relative contributions to the binding of molecular "dumbbell" guests in synthetic container hosts in water. The guests offered direct, intramolecular competition between trimethylammonium groups, -N+(CH3)3, and tert-butyl groups, -C(CH3)3, for the internal surfaces (aromatic panels) of the containers. In contrast with previous studies, the container molecules consistently preferred binding to the uncharged tert-butyl groups, regardless of the presence of anionic, cationic, or zwitterionic groups on the container peripheries. This preference is determined by solvation of the polar trimethylammonium group in water, which outcompetes the attraction between the positive charge and the π-surfaces in the container. The synthetic container complexes provide a direct measure of the relative strengths of cation-π interactions and desolvation in water. Interactions with the uncharged tert-butyl group are more than 12 kJ mol-1 more favorable than the cation-π interactions with the trimethylammonium group in these cavitand complexes.

19.
Plant Physiol Biochem ; 166: 485-494, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34166975

ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in the regulation of development and the response to biotic and abiotic stresses in plants. Serotonin-N-acetyltransferase (SNAT) functions as a key catalytic enzyme involved in melatonin biosynthesis. In this study, the candidate gene VvSNAT1 (SNAT isogene) was isolated from grape (Vitis vinifera L. cv. Merlot). Tissue-specific expression and external treatment revealed that VvSNAT1 is a salt-inducible gene that is highly expressed in leaves. Subcellular localisation results revealed that VvSNAT1 was located in the chloroplasts, which is similar to other plant SNAT proteins. Ectopic overexpression of VvSNAT1 in Arabidopsis resulted in increased melatonin production and salt tolerance. Transgenic Arabidopsis overexpressing VvSNAT1 exhibited enhanced growth and physiological performance, including a lower degree of leaf wilting, higher germination rate, higher fresh weight, and longer root length under salt stress. Moreover, overexpression of VvSNAT1 in Arabidopsis protected cells from oxidative damage by reducing the accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2). These results indicate that VvSNAT1 positively responds to salt stress. Our results provide a novel perspective for VvSNAT1 to improve salt tolerance, mediated by melatonin accumulation, plant growth promotion and oxidative damage reduction.


Subject(s)
Arabidopsis , Melatonin , Arabidopsis/genetics , Hydrogen Peroxide , Plants, Genetically Modified , Salt Tolerance/genetics
20.
Artif Cells Nanomed Biotechnol ; 49(1): 450-460, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33993821

ABSTRACT

Zinc oxide nanoparticles (ZnO-NPs) have been produced by physical and chemical methods. Here, the comparative evaluation of both chemically-synthesised ZnO-NPs (C-ZNPs) and in-vitro cultured S. marianum mediated green-synthesised ZnO-NPs (G-ZNPs) were investigated on seed germination frequency, root and shoot growth, callus induction and biochemical profile of medicinally important plant Silybum marianum. Of all the treatments, callus-mediated ZnO-NPs gave optimum results for seed germination (65%), plantlet's root length (4.3 cm), shoot length (5.3 cm) and fresh and dry weights (220.4 g L-1 and 21.23 g L-1, respectively). Similarly, the accumulation of phenolic (12.3 µg/mg DW) and flavonoid (2.8 µg/mg DW) contents were also enhanced in callus cultures treated with G-ZNPs. We also observed maximum antioxidant activity (99%) in callus cultures treated with G-ZNPs, however, in case of plantlets, these activities were found highest for in-vitro whole plant-mediated ZnO-NPs. Moreover, G-ZNPs also enhanced total protein content (265.32 BSAE/20g FW) in callus cultures. G-ZNPs were further assessed for their effects on several multidrug resistant bacterial strains and human liver carcinoma (HepG2) cells and our findings revealed that callus extracts treated with G-ZNPs show ameliorated antibacterial (highest zone of inhibition (19 mm) against Klebsiella pneumonia) and anticancer (highest cytotoxicity of 64%) activities.


Subject(s)
Silybum marianum , Anti-Bacterial Agents , Anti-Infective Agents , Antioxidants , Green Chemistry Technology , Seedlings , Zinc Oxide
SELECTION OF CITATIONS
SEARCH DETAIL
...