Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Comp Biochem Physiol C Toxicol Pharmacol ; 283: 109951, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844188

ABSTRACT

Pesticides are widely used to control weeds and pests in agricultural settings but harm non-target aquatic organisms. In this study, our objective was to evaluate the effect of short-term exposure (one week) to environmentally relevant concentrations of pesticides mixture (low concentration: 0.4 µg/l atrazine, 0.5 µg/l Roundup®, and 0.5 µg/l 2,4-D; high concentration: 0.8 µg/l atrazine, 1 µg/l Roundup®, and 1 µg/l 2,4-D) on tissue architecture, body fluid conditions, and 3-nitrotyrosine protein (NTP) and Na+/K+-ATPase, expressions in tissues of American oyster (Crassostrea virginica) under controlled laboratory conditions. Histological analysis demonstrated the atrophy in the gills and digestive glands of oysters exposed to pesticides mixture. Periodic acid-Schiff (PAS) staining showed the number of hemocytes in connective tissue increased in low- and high-concentration pesticides exposure groups. However, pesticides treatment significantly (P < 0.05) decreased the amount of mucous secretion in the gills and digestive glands of oysters. The extrapallial fluid (i.e., body fluid) protein concentrations and glucose levels were dropped significantly (P < 0.05) in oysters exposed to high-concentration pesticides exposure groups. Moreover, immunohistochemical analysis showed significant upregulations of NTP and Na+/K+-ATPase expressions in the gills and digestive glands in pesticides exposure groups. Our results suggest that exposure to environmentally relevant pesticides mixture causes morphological changes in tissues and alters body fluid conditions and NTP and Na+/K+-ATPase expressions in tissues, which may lead to impaired physiological functions in oysters.

2.
J Agric Food Chem ; 72(6): 3180-3188, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38308634

ABSTRACT

Fatty acids (FAs) containing polymethylene-interrupted (PMI) double bonds are a component of human foods; however, they present a significant analytical challenge for de novo identification. Covalent adduct chemical ionization and ozone-induced dissociation mass spectrometry (MS) methods enable unambiguous assignment of PMI-FA double bond positions, however, no method has been reported with electrospray ionization (ESI) platform using off-the-shelf systems. In the current work, we studied the Paternò-Büchi (PB) fragmentation patterns of PMI-FA and triacylglycerol (TG) by analyzing several known food sources. PB-MS/MS and MS3 enabled complete double bond location assignments, including the isolated double bond in PMI-FA and triacylglycerols. Sea urchin ("uni"), oyster, pine nut, and ginkgo nut were characterized for their signature PMI-FA, 20:2(5Z,11Z), 22:2(7Z, 15Z), 18:3(5Z,9Z,12Z), and 20:3(5Z,11Z,14Z), respectively. Quantitative analyses of the relative abundance of these PMI-FA led to results similar to reference methods. 18:3(5Z,9Z,12Z) was enriched at the sn-1/sn-3 position in pine nut major TG.


Subject(s)
Fatty Acids , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Fatty Acids/chemistry , Triglycerides/chemistry , Food , Spectrometry, Mass, Electrospray Ionization/methods
3.
Environ Sci Pollut Res Int ; 31(8): 11406-11427, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183542

ABSTRACT

Ecosystems are multifaceted and complex systems and understanding their composition is crucial for the implementation of efficient conservation and management. Conventional approaches to biodiversity surveys can have limitations in detecting the complete range of species present. In contrast, the study of environmental RNA (eRNA) offers a non-invasive and comprehensive method for monitoring and evaluating biodiversity across different ecosystems. Similar to eDNA, the examination of genetic material found in environmental samples can identify and measure many species, including ones that pose challenges to traditional methods. However, eRNA is degraded quickly and therefore shows promise in detection of living organisms closer to their actual location than eDNA methods. This method provides a comprehensive perspective on the well-being of ecosystems, facilitating the development of focused conservation approaches to save at-risk species and uphold ecological equilibrium. Furthermore, eRNA has been recognized as a valuable method for the identification of COVID-19 in the environment, besides its established uses in biodiversity protection. The SARS-CoV-2 virus, which is accountable for the worldwide epidemic, releases RNA particles into the surrounding environment via human waste, providing insights into the feasibility of detecting it in wastewater and other samples taken from the environment. In this article, we critically reviewed the recent research activities that use the eRNA method, including its utilization in biodiversity conservation, ecological surveillance, and ecotoxicological monitoring as well as its innovative potential in identifying COVID-19. Through this review, the reader can understand the recent developments, prospects, and challenges of eRNA research in ecosystem management and biodiversity conservation.


Subject(s)
COVID-19 , Ecosystem , Humans , RNA/genetics , DNA Barcoding, Taxonomic/methods , SARS-CoV-2 , Biodiversity , Environmental Monitoring/methods
4.
Chemosphere ; 351: 141238, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242519

ABSTRACT

The rise in worldwide population has led to a noticeable spike in the production, consumption, and transportation of energy and food, contributing to elevated environmental pollution. Marine pollution is a significant global environmental issue with ongoing challenges, including plastic waste, oil spills, chemical pollutants, and nutrient runoff, threatening marine ecosystems, biodiversity, and human health. Pollution detection and assessment are crucial to understanding the state of marine ecosystems. Conventional approaches to pollution evaluation usually represent laborious and prolonged physical and chemical assessments, constraining their efficacy and expansion. The latest advances in environmental DNA (eDNA) are valuable methods for the detection and surveillance of pollution in the environment, offering enhanced sensibility, efficacy, and involvement. Molecular approaches allow genetic information extraction from natural resources like water, soil, or air. The application of eDNA enables an expanded evaluation of the environmental condition by detecting both identified and unidentified organisms and contaminants. eDNA methods are valuable for assessing community compositions, providing indirect insights into the intensity and quality of marine pollution through their effects on ecological communities. While eDNA itself is not direct evidence of pollution, its analysis offers a sensitive tool for monitoring changes in biodiversity, serving as an indicator of environmental health and allowing for the indirect estimation of the impact and extent of marine pollution on ecosystems. This review explores the potential of eDNA metabarcoding techniques for detecting and identifying marine pollutants. This review also provides evidence for the efficacy of eDNA assessment in identifying a diverse array of marine pollution caused by oil spills, harmful algal blooms, heavy metals, ballast water, and microplastics. In this report, scientists can expand their knowledge and incorporate eDNA methodologies into ecotoxicological research.


Subject(s)
DNA, Environmental , Environmental Pollutants , Humans , Ecosystem , DNA, Environmental/genetics , Plastics , DNA Barcoding, Taxonomic/methods , Environmental Monitoring/methods , Biodiversity , Environmental Pollution , Water
5.
Article in English | MEDLINE | ID: mdl-37532112

ABSTRACT

Extensive agricultural activities to feed the growing population are one major driving force behind aquatic pollution. Different types of pesticides are used in farmlands to increase crop production and wash up into water bodies. Glyphosate-based herbicide Roundup® is one of the most used pesticides in the United States; however, its effects on teleost species are still poorly understood. This study focused on the effects of environmentally relevant concentrations of Roundup exposure (low- and high-dose: 0.5 and 5 µg/L for 2-week) on Na+/K+-ATPase (NKA, a biomarker for sodium­potassium ion pump efficacy), cytochrome P450-1A (CYP1A, a monooxygenase enzyme), 2,4-dinitrophenyl protein (DNP, a biomarker for protein oxidation), 3-nitrotyrosine protein (NTP, a biomarker for protein nitration), superoxidase dismutase (SOD, an antioxidant enzyme), catalase (CAT, an antioxidant enzyme) expressions, and cellular apoptosis in the gills of goldfish. Histopathological and in situ TUNEL analyses showed widespread tissue damage, including lamellar fusion, loss of gill architecture, club shape of primary lamellae, mucous formation, and distortion in the epithelium layer, as well as apoptotic nuclei in gills. Immunohistochemical and qRT-PCR analyses provided insights into the expressions of molecular indicators in gills. Fish exposed to Roundup exhibited a significant (P < 0.05) downregulation of NKA expression in gills. Additionally, we observed upregulation of CYP1A, DNP, NTP, SOD, and CAT expressions in the gills of goldfish. Overall, our results suggest that exposure to Roundup causes disruption of gill architecture, induces protein oxidation/nitration and cellular apoptosis, and alters prooxidant-antioxidant homeostasis in tissues, which may lead to reduced fitness and survivability of teleost species.


Subject(s)
Antioxidants , Herbicides , Animals , Antioxidants/metabolism , Goldfish/metabolism , Gills/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Superoxide Dismutase/metabolism , Apoptosis , Sodium/metabolism , Biomarkers/metabolism
6.
Environ Sci Pollut Res Int ; 30(41): 94757-94778, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37540412

ABSTRACT

Aquatic organisms are frequently exposed to various environmental stressors. Thus, the effects of high temperatures and herbicides on aquatic organisms are a major subject of interest. In this study, we studied the effects of short-term exposure (1 week) to Roundup®, a glyphosate-based herbicide (concentrations: 0.5 and 5 µg/L), on the morphology of gills, digestive glands, and connective tissues, and the expression of heat shock protein-70 (HSP70, a chaperone protein), cytochrome P450 (CYP450, a biomarker of environmental contaminants), dinitrophenyl protein (DNP, a biomarker of protein oxidation), nitrotyrosine protein (NTP, a biomarker of protein nitration), antioxidant enzymes such as superoxidase dismutase (SOD) and catalase (CAT) in tissues of American oyster, Crassostrea virginica (Gmelin, 1791) maintained at high temperature (30 °C). Histological analyses showed an increase in mucous production in the gills and digestive glands, and in hemocyte aggregation in the connective tissues as well as a structural change of lumen in the digestive glands of oysters exposed to Roundup. Immunohistochemical and quantitative RT-PCR analyses showed significant (P < 0.05) increases in HSP70, CYP450, DNP, NTP, CAT, and SOD mRNA and protein expressions in the tissues of oysters exposed to Roundup. Taken together, these results suggest that exposure to Roundup at high temperature induces overproduction of reactive oxygen species/reactive nitrogen species which in turn leads to altered prooxidant-antioxidant activity in oyster tissues. Moreover, our results provide new information on protein oxidation/nitration and antioxidant-dependent mechanisms for HSP70 and CYP450 regulations in oysters exposed to Roundup at high temperature.


Subject(s)
Crassostrea , Herbicides , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Temperature , Oxidative Stress , Herbicides/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Biomarkers/metabolism , Water Pollutants, Chemical/metabolism
7.
J Toxicol Environ Health A ; 86(4): 103-118, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36734348

ABSTRACT

House geckos share living quarters with humans in the tropical and subtropical regions inhabited by these reptiles. Gecko behavior, biological traits, continuous exposure to suspended particulate matter 0 µm in diameter (PM10) and dust, as well as status as exotic species, motivated the choice of these species to examine environmental exposure to ambient air pollutants, in particular metals, and subsequent accumulation in these organisms. One part of the study was conducted in Tamaulipas (Mexico) where Hemydactylus frenatus is abundant in urban and industrial environments, the other part was conducted in Andalucia (Spain) where Tarentola mauritanica is found in similar environments. Adult geckos were collected on buildings in locations affected by various air pollution sources. For both species, higher metal contents were observed in whole-body (including digestive tracts) analysis and were markedly different between collection sites. Contents in tails, digestive tracts, and carcasses without digestive tracts were not correlated. Based on contamination factor values, bioaccumulation in H. frenatus tissues occurred for 12 of the 15 metals analyzed. Data suggest that H. frenatus might serve as a biomonitor for Cu, Ni, Pb, Cr, Li, and V, whereas T. mauritanica might be a biomonitor for Cu, Ni, Pb, and Cr. To our knowledge, metal contents for H. frenatus are reported here for the first time. House gecko data could be integrated into a highly representative monitoring system and health risk assessments related to air quality in residential areas.


Subject(s)
Lizards , Metals, Heavy , Humans , Animals , Adult , Spain , Mexico , Lead , Environmental Monitoring , Metals, Heavy/analysis
8.
J Toxicol Environ Health A ; 86(5): 144-165, 2023 03 04.
Article in English | MEDLINE | ID: mdl-36756740

ABSTRACT

The synergy between multiple compounds and other stressors, including heat, creates volatility and greater unpredictability than standard single-chemical toxicity testing, especially in the case of pesticides and metabolites which might contain several noxious ingredients resulting in adverse ecological effects. To address this, the aim of this study was to examine the dose- and time-dependent effects of low- and high-dose pesticide mixture (metalachlor, linuron, isoproturon, tebucanazole, aclonifen, atrazine, pendimethalin, azinphos-methyl) and heat stress co-exposure (22°C control/32°C treatment for 4-week) on free-swimming behaviors and cumulative actionless time (CAT) of goldfish. Behavioral analysis showed a dose- and time-dependent decrease in distance swam, as well as a subsequent increase in CAT. Vertical and horizontal spatial behavioral use were affected under heat and pesticides co-exposure conditions. In 3- and 4-week(s) exposure groups, horizontal spatial behavioral use demonstrated elevated time spent in the lower third of the aquarium. Similarly, during 3- and 4-week(s) exposure (32°C control and 32°C high doses) vertical spatial behavioral use was found to increase time spent in the outermost edges of the aquarium. In all treatment groups, the final condition factor (KM) showed significant attenuation when compared to the initial KM. However, there was an unclear relationship between heat/pesticide co-exposure and growth most notably in 32°C high-dose groups. In addition, the expression of hepatic cytochrome P450 1A mRNA was significantly higher in pesticide-exposed groups. Taken together, data demonstrated that co-exposure with low- or high-dose pesticide mixture and heat stress significantly impacted natural swimming patterns, which over time might result in the broader population and ecological effects.


Subject(s)
Pesticides , Animals , Pesticides/toxicity , Pesticides/metabolism , Goldfish/metabolism , Swimming , Temperature , Cytochrome P-450 Enzyme System/metabolism
9.
Fish Shellfish Immunol Rep ; 4: 100079, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36589260

ABSTRACT

Global temperature is increasing due to anthropogenic activities and the effects of elevated temperature on DNA lesions are not well documented in marine organisms. The American oyster (Crassostrea virginica, an edible and commercially important marine mollusk) is an ideal shellfish species to study oxidative DNA lesions during heat stress. In this study, we examined the effects of elevated temperatures (24, 28, and 32 °C for one-week exposure) on heat shock protein-70 (HSP70, a biomarker of heat stress), 8­hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), γ-histone family member X (γH2AX, a molecular biomarker of DNA damage), caspase-3 (CAS-3, a key enzyme of apoptotic pathway) and Bcl-2-associated X (BAX, an apoptosis regulator) protein and/or mRNA expressions in the gills of American oysters. Immunohistochemical and qRT-PCR results showed that HSP70, 8-OHdG, dsDNA, and γH2AX expressions in gills were significantly increased at high temperatures (28 and 32 °C) compared with control (24°C). In situ TUNEL analysis showed that the apoptotic cells in gill tissues were increased in heat-exposed oysters. Interestingly, the enhanced apoptotic cells were associated with increased CAS-3 and BAX mRNA and/or protein expressions, along with 8-OHdG levels in gills after heat exposure. Moreover, the extrapallial (EP) fluid (i.e., extracellular body fluid) protein concentrations were lower; however, the EP glucose levels were higher in heat-exposed oysters. Taken together, these results suggest that heat shock-driven oxidative stress alters extracellular body fluid conditions and induces cellular apoptosis and DNA damage, which may lead to increased 8-OHdG levels in cells/tissues in oysters.

10.
Article in English | MEDLINE | ID: mdl-36427667

ABSTRACT

Environmental pollution increases due to anthropogenic activities. Toxic chemicals in the environment affect the health of aquatic organisms. Tributyltin (TBT) is a toxic chemical widely used as an antifouling paint on boats, hulls, and ships. The toxic effect of TBT is well documented in aquatic organisms; however, little is known about the effects of TBT on DNA lesions in shellfish. The American oyster (Crassostrea virginica, an edible and commercially important species) is an ideal marine mollusk to examine the effects of TBT exposure on DNA lesions and oxidative/nitrative stress. In this study, we investigated the effects of TBT on 8'-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), dinitrophenyl protein (DNP, a biomarker on reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, a biomarker of reactive nitrogen species, RNS), catalase (CAT, an antioxidant), and acetylcholinesterase (AChE, a cholinergic enzyme) expressions in the gills and digestive glands of oysters. We also analyzed extrapallial (EF) fluid conditions. Immunohistochemical and qRT-PCR results showed that TBT exposure significantly increased 8-OHdG, dsDNA, DNP, NTP, and CAT mRNA and/or protein expressions in the gills and digestive glands. However, AChE mRNA and protein expressions, and EP fluid pH and protein concentrations were decreased in TBT-exposed oysters. Taken together, these results suggest that antifouling biocide-induced production of ROS/RNS results in DNA damage, which may lead to decreased cellular functions in oysters. To the best of our knowledge, the present study provides the first molecular/biochemical evidence that TBT exposure results in oxidative/nitrative stress and DNA lesions in oysters.


Subject(s)
Crassostrea , Trialkyltin Compounds , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Acetylcholinesterase/metabolism , Oxidative Stress , Trialkyltin Compounds/toxicity , Biomarkers/metabolism , RNA, Messenger/metabolism , Water Pollutants, Chemical/metabolism
11.
Vaccines (Basel) ; 10(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36560397

ABSTRACT

The COVID-19 pandemic has inflicted a massive disease burden globally, involving 623 million confirmed cases with 6.55 million deaths, and in Bangladesh, over 2.02 million clinically confirmed cases of COVID-19, with 29,371 deaths, have been reported. Evidence showed that vaccines significantly reduced infection, severity, and mortality across a wide age range of populations. This study investigated the hospitalization and mortality by vaccination status among COVID-19 patients in Bangladesh and identified the vaccine's effectiveness against severe outcomes in real-world settings. Between August and December 2021, we conducted this cross-sectional survey among 783 RT-PCR-confirmed COVID-19 hospitalized patients admitted to three dedicated COVID-19 hospitals in Bangladesh. The study used a semi-structured questionnaire to collect information. We reviewed the patient's records and gathered COVID-19 immunization status from the study participants or their caregivers. Patients with incomplete or partial data from the record were excluded from enrollment. Logistic regression analyses were performed to determine the association between key variables with a patient's vaccination status and mortality. The study revealed that overall hospitalization, severity, and morality were significantly high among unvaccinated study participants. Only one-fourth (25%) of hospitalized patients were found COVID-19 vaccinated. Morality among unvaccinated COVID-19 study participants was significantly higher (AOR: 7.17) than the vaccinated (11.17% vs. 1.53%). Severity was found to be seven times higher among unvaccinated patients. Vaccination coverage was higher in urban areas (29.8%) compared to rural parts (20.8%), and vaccine uptake was lower among female study participants (22.7%) than male (27.6%). The study highlighted the importance of COVID-19 vaccines in reducing mortality, hospitalization, and other severe consequences. We found a gap in vaccination coverage between urban and rural settings. The findings would encourage the entire population toward immunization and aid the policymakers in the ground reality so that more initiatives are taken to improve vaccination coverage among the pocket population.

12.
J Appl Toxicol ; 42(11): 1787-1806, 2022 11.
Article in English | MEDLINE | ID: mdl-35698815

ABSTRACT

One of many noteworthy consequences of increasing societal reliance on pesticides is their predominance in aquatic environments. These pernicious chemicals interact with high temperatures from global climate change, heat waves, and natural variations to create unstable environments that negatively impact organisms' health. To understand these conditions, we examined the dose-dependent effects of environmentally relevant pesticide mixtures (metolachlor, linuron, isoproturon, tebuconazole, aclonifen, atrazine, pendimethalin, and azinphos-methyl) combined with elevated temperatures (22 control vs. 32°C for 4-week exposure) on renin, dinitrophenyl protein (DNP, an indicator of reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, an indicator of reactive nitrogen species, RNS), superoxidase dismutase (SOD, an antioxidant), and catalase (CAT, an antioxidant) expressions in the kidneys of goldfish (Carassius auratus). Histopathological analysis showed widespread damage to kidney tissues in high temperature and pesticide co-exposure groups, including rupture of the epithelial layer, hemorrhaging, and degeneration of tubular epithelium. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical analyses demonstrated significant declines in renin receptor-like mRNA and protein expressions in kidney tissues under combined exposure to high temperature and pesticides compared with controls; conversely, expression of DNP, NTP, SOD, and CAT increased in kidney tissues under the same conditions. Apoptotic cells were also increased in co-exposure groups as assessed by in situ terminal deoxynucleotidyl transferase dUTP nick labeling (TUNEL) assay. The enhanced apoptosis in kidneys of heat and pesticides co-exposed fish was associated with increased caspase-3 (a protease enzyme) mRNA levels. Our results demonstrated that high temperature and pesticides induced oxidative/nitrative stress (i.e., ROS/RNS), damaged tissues, increased cellular apoptosis, and suppressed renin expression in kidneys of goldfish.


Subject(s)
Atrazine , Pesticides , Animals , Antioxidants/metabolism , Apoptosis , Atrazine/metabolism , Atrazine/pharmacology , Azinphosmethyl/metabolism , Azinphosmethyl/pharmacology , Caspase 3/metabolism , Catalase/metabolism , DNA Nucleotidylexotransferase/metabolism , DNA Nucleotidylexotransferase/pharmacology , Goldfish/metabolism , Hot Temperature , Kidney , Linuron/metabolism , Linuron/pharmacology , Oxidative Stress , Pesticides/toxicity , RNA, Messenger/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Renin/metabolism , Renin/pharmacology , Superoxide Dismutase/metabolism , Temperature
13.
Environ Sci Pollut Res Int ; 29(38): 57376-57394, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35352221

ABSTRACT

In this study, we examined the dose-dependent effects of an environmentally relevant pesticide cocktail (metalachlor, linuron, isoproturon, tebucanazole, aclonifen, atrazine, pendimethalin, and azinphos-methyl) and temperature change (22 vs. 32 °C for 4-week exposure) on Na+/K+-ATPase, 3-nitrotyrosine protein (NTP), dinitrophenyl protein (DNP), catalase (CAT), and superoxide dismutase (SOD) expressions in gills of goldfish (Carassius auratus). Histopathological analysis showed widespread damage to gill in elevated temperature (32 °C) and pesticide co-exposure groups, including fusion of secondary lamellae, club-shaped primary lamellae, rupture of epithelial layer, loss of normal architecture, and hemorrhaging. Immunohistochemical and qRT-PCR analyses showed significant decreases in Na+/K+-ATPase protein and mRNA expressions in gills exposed to higher temperature and pesticides; however, combined exposure to heat and pesticides significantly increases NTP, DNP, CAT, and SOD expressions. In situ TUNEL assay revealed elevated levels of apoptotic cells in response to combined exposure. Collectively, our results suggest the combined effects of heat and pesticide stress cause cellular damage, upregulate oxidative/nitrative stress biomarkers, and increase apoptotic cells, downregulate Na+/K+-ATPase expression in gills. This provides new evidence for oxidant/antioxidant-dependent mechanisms for downregulation of Na+/K+-ATPase expression in gills during combined exposure.


Subject(s)
Pesticides , Sodium-Potassium-Exchanging ATPase/metabolism , Water Pollutants, Chemical , Adenosine Triphosphatases/metabolism , Animals , Antioxidants/metabolism , Apoptosis , Gills/metabolism , Goldfish/metabolism , Hot Temperature , Oxidative Stress , Pesticides/metabolism , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/metabolism
14.
Food Chem ; 371: 131131, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34563966

ABSTRACT

Sea urchin (class Echinoidea) gonads are a prized delicacy in Japan and many other world cultures. The complexity of its fatty acid (FA) profile, particularly minor FA, presents a formidable analytical challenge. We applied solvent mediated (SM) covalent adduct chemical ionization (CACI) tandem mass spectrometry to comprehensive de novo structural and quantitative characterization of the FA profile of Gulf of Mexico Atlantic sea urchin (Arbacia punctulata). >100 FA were detected including many with unusual double bond structure. Gulf sea urchin gonad lipids are rich in Δ5 monounsaturated FA 20:1(5Z) at 2.7% and the polymethylene-interrupted (PMI) diene 20:2(5Z,11Z) at 4.9%, as well as common omega-3 eicosapentaenoic acid (EPA; 5Z, 8Z, 11Z, 14Z, 17Z) at 9.8%±3.1% and arachidonic acid (AA; 5Z, 8Z, 11Z, 14Z) at 6.1%±2.1%. We propose plausible desaturation/elongation-based biochemical pathways for the endogenous production of unusual unsaturates. Unusual unsaturates may modify mammalian signaling and present novel bioactivities.


Subject(s)
Arbacia , Fatty Acids, Omega-3 , Animals , Fatty Acids , Gulf of Mexico , Mass Spectrometry , Sea Urchins , Solvents
15.
Cell Stress Chaperones ; 26(6): 917-936, 2021 11.
Article in English | MEDLINE | ID: mdl-34524641

ABSTRACT

One of the major impacts of climate change has been the marked rise in global temperature. Recently, we demonstrated that high temperatures (1-week exposure) disrupt prooxidant-antioxidant homeostasis and promote cellular apoptosis in the American oyster. In this study, we evaluated the effects of seasonal sea surface temperature (SST) on tissue morphology, extrapallial fluid (EPF) conditions, heat shock protein-70 (HSP70), dinitrophenyl protein (DNP, an indicator of reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, an indicator of RNS), catalase (CAT), superoxide dismutase (SOD) protein expressions, and cellular apoptosis in gills and digestive glands of oysters collected on the southern Texas coast during the winter (15 °C), spring (24 °C), summer (30 °C), and fall (27 °C). Histological observations of both tissues showed a notable increase in mucus production and an enlargement of the digestive gland lumen with seasonal temperature rise, whereas biochemical analyses exhibited a significant decrease in EPF pH and protein concentration. Immunohistochemical analyses showed higher expression of HSP70 along with the expression of DNP and NTP in oyster tissues during summer. Intriguingly, CAT and SOD protein expressions exhibited significant upregulation with rising seasonal temperatures (15 to 27 °C), which decreased significantly in summer (30 °C), leaving oysters vulnerable to oxidative and nitrative damage. qRT-PCR analysis revealed a significant increase in HSP70 mRNA levels in oyster tissues during the warmer seasons. In situ TUNNEL assay showed a significant increase in apoptotic cells in seasons with high temperature. These results suggest that elevated SST induces oxidative/nitrative stress through the overproduction of ROS/RNS and disrupts the antioxidant system which promotes cellular apoptosis in oysters.


Subject(s)
Antioxidants/metabolism , Climate Change , Ostreidae/metabolism , Reactive Oxygen Species/metabolism , Animals , Apoptosis/genetics , Catalase/genetics , Gills/metabolism , Gulf of Mexico , HSP70 Heat-Shock Proteins/genetics , Homeostasis , Ostreidae/genetics , Oxidative Stress/genetics , Seasons , Superoxide Dismutase/genetics , Temperature
16.
Front Physiol ; 12: 720200, 2021.
Article in English | MEDLINE | ID: mdl-34434121

ABSTRACT

We have previously shown that nitric oxide synthase (NOS, an enzyme) is significantly increased during hypoxic stress in Atlantic croaker brains and modulated by an antioxidant (AOX). However, the influence of NOS and AOX on cytochrome P450 aromatase (AROM, CYP19a1, an enzyme) activity on vertebrate brains during hypoxic stress is largely unknown. In this study, we characterized brain AROM (bAROM, CYP19a1b) cDNA in croaker and examined the interactive effects of hypoxia and a NOS-inhibitor or AOX on AROM activity. The amino acid sequence of croaker bAROM cDNA is highly homologous (76-80%) to other marine teleost bAROM cDNAs. Both real-time PCR and Northern blot analyses showed that bAROM transcript (size: ∼2.8 kb) is highly expressed in the preoptic-anterior hypothalamus (POAH). Hypoxia exposure (dissolved oxygen, DO: 1.7 mg/L for 4 weeks) caused significant decreases in hypothalamic AROM activity, bAROM mRNA and protein expressions. Hypothalamic AROM activity and mRNA levels were also decreased by pharmacological treatment with N-ethylmaleimide (NEM, an alkylating drug that modifies sulfhydryl groups) of fish exposed to normoxic (DO: ∼6.5 mg/L) conditions. On the other hand, treatments with Nω-nitro-L-arginine methyl ester (NAME, a competitive NOS-inhibitor) or vitamin-E (Vit-E, a powerful AOX) prevented the downregulation of hypothalamic AROM activity and mRNA levels in hypoxic fish. Moreover, NAME and Vit-E treatments also restored gonadal growth in hypoxic fish. Double-labeled immunohistochemistry results showed that AROM and NOS proteins are co-expressed with NADPH oxidase (generates superoxide anion) in the POAH. Collectively, these results suggest that the hypoxia-induced downregulation of AROM activity in teleost brains is influenced by neuronal NOS activity and AOX status. The present study provides, to the best of our knowledge, the first evidence of restoration of AROM levels in vertebrate brains by a competitive NOS-inhibitor and potent AOX during hypoxic stress.

17.
Environ Sci Pollut Res Int ; 28(24): 32066-32073, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33982254

ABSTRACT

The marine environment is increasingly polluted by anthropogenic wastes, notably plastic debris. This debris breaks down into smaller pieces, known as microplastics. When consumed by marine organisms, microplastics cause various physiological effects. In this study, we sought to determine a link between ingested microplastics and cytochrome P450-1A (CYP1A) expression in fish liver. To achieve this goal, we collected pinfish from five sites in Lower Laguna Madre (LLM, a large coastal lagoon), analyzed stomach contents, excised liver tissues, and performed immunohistochemical analysis to determine CYP1A expression. Microplastics were not discovered in the stomach/intestine of pinfish, though plastic debris was present at various stages of decomposition within sampling sites. Hepatic CYP1A expression was significantly higher in pinfish collected from four of five sampling sites when compared to fish in laboratory conditions. These results imply that pinfish, as well as other organisms, may be exposed to pollutants other than microplastics in LLM.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Animals , Cytochrome P-450 Enzyme System , Environmental Monitoring , Microplastics , Plastics , Texas , Water Pollutants, Chemical/analysis
18.
Environ Toxicol Pharmacol ; 84: 103615, 2021 May.
Article in English | MEDLINE | ID: mdl-33607259

ABSTRACT

Marine and land plastic debris biodegrades at micro- and nanoscales through progressive fragmentation. Oceanographic model studies confirm the presence of up to ∼2.41 million tons of microplastics across the Atlantic, Pacific, and Indian subtropical gyres. Microplastics distribute from primary (e.g., exfoliating cleansers) and secondary (e.g., chemical deterioration) sources in the environment. This anthropogenic phenomenon poses a threat to the flora and fauna of terrestrial and aquatic ecosystems as ingestion and entanglement cases increase over time. This review focuses on the impact of microplastics across taxa at suggested environmentally relevant concentrations, and advances the groundwork for future ecotoxicological-based research on microplastics including the main points: (i) adhesion of chemical pollutants (e.g., PCBs); (ii) biological effects (e.g., bioaccumulation, biomagnification, biotransportation) in terrestrial and aquatic organisms; (iii) physico-chemical properties (e.g., polybrominated diphenyl ethers) and biodegradation pathways in the environment (e.g., chemical stress, heat stress); and (iv) an ecotoxicological prospect for optimized impact assessments.


Subject(s)
Environmental Pollutants/toxicity , Microplastics/toxicity , Animals , Aquatic Organisms/drug effects , Ecotoxicology , Environmental Monitoring , Humans , Seawater
19.
Environ Res ; 196: 110428, 2021 05.
Article in English | MEDLINE | ID: mdl-33186574

ABSTRACT

Increasing seawater temperature affects growth, reproduction, development, and various other physiological processes in aquatic organisms, such as marine invertebrates, which are especially susceptible to high temperatures. In this study, we examined the effects of short-term heat stress (16, 22, 26, and 30 °C for 1-week exposure) on prooxidant-antioxidant homeostasis and redox status in the American oyster (Crassostrea virginica, an edible and commercially cultivated bivalve mollusk) under controlled laboratory conditions. Immunohistochemical and real-time quantitative PCR (qRT-PCR) analyses were performed to examine the expression of heat shock protein-70 (HSP70, a biomarker of heat stress), catalase (CAT, an antioxidant), superoxide dismutase (SOD, an antioxidant), dinitrophenyl protein (DNP, a biomarker of reactive oxygen species, ROS), and 3-nitrotyrosine protein (NTP, an indicator of reactive nitrogen species, RNS), in the gills and digestive glands of oysters. In situ TUNEL assay was performed to detect cellular apoptosis in tissues. Histological analysis showed an increase in mucus secretion in the gills and digestive glands of oysters exposed to higher temperatures (22, 26, and 30 °C) compared to control (16 °C). Immunohistochemical and qRT-PCR analyses showed significant increases in HSP70, DNP and NTP protein, and mRNA expressions in tissues at higher temperatures. Cellular apoptosis was also significantly increased at higher temperatures. Thus, heat-induced oxidative and nitrative stress likely occur due to overproduction of ROS and RNS. Interestingly, expression of CAT and SOD increased in oysters exposed to 22 and 26 °C, but was at or below control levels in the highest temperature exposure (30 °C). Collectively, these results suggest that elevated seawater temperatures cause oxidative/nitrative stress and induce cellular apoptosis through excessive ROS and RNS production, leading to inhibition of the antioxidant defense system in marine mollusks.


Subject(s)
Crassostrea , Animals , Antioxidants , Apoptosis , Heat-Shock Response , Homeostasis , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Temperature , United States
20.
J Biochem Mol Toxicol ; 34(7): e22500, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32220049

ABSTRACT

The arginine vasotocin (AVT)-V1a receptor mediates critical reproductive behaviors of the nonapeptide vasotocin in the teleost brain. In this study, we report the molecular characterization of the AVT-V1a2 receptor and its messenger RNA (mRNA) and protein expressions in the Atlantic croaker brain after exposure to the planar polychlorinated biphenyl congener 3,3',4,4'-tetrachlorobiphenyl (PCB77). The full-length sequence of croaker AVT-V1a2 receptor complementary DNA (cDNA) is highly homologous to other teleost AVT-V1a2 receptor cDNAs. Double-labeled immunohistochemistry showed coexpression of AVT-V1a2 receptor and gonadotropin-releasing hormone-I (GnRH-I, a neuropeptide that regulates gonadotropin secretion) in hypothalamic neurons, thereby providing the anatomical basis for possible AVT modulation of croaker reproduction through alterations in GnRH-I secretion. AVT-V1a2 receptor mRNA and protein levels as well as GnRH-I mRNA levels were markedly decreased in hypothalamic tissues of croaker exposed to PCB77 (dose: 2 and 8 µg/g body weight for 4 weeks) compared with levels in untreated (control) fish. In contrast, hypothalamic cytochrome P450 1A (CYP1A, a monooxygenase enzyme) and interleukin-1ß (IL-1ß, a cytokine indicator of inflammation and response to neuronal damage) mRNA levels, and plasma protein carbonyl (PC, an indicator of reactive oxygen species) contents, important biomarkers of neural stress, were increased in PCB77-exposed fish compared with controls. Collectively, these results suggest that the downregulation of hypothalamic AVT-V1a2 receptor and GnRH-I transcripts due to PCB77 exposure is associated with induction of CYP1A, cellular inflammation and oxidative stress in Atlantic croaker, a marine teleost that inhabits estuaries along the US Atlantic coast and the Gulf of Mexico that are often contaminated with persistent organic pollutants such as PCBs.


Subject(s)
Brain/metabolism , Down-Regulation/drug effects , Perciformes/metabolism , Polychlorinated Biphenyls/pharmacology , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism , Water Pollutants, Chemical/pharmacology , Animals , Base Sequence , Brain/drug effects , Cytochrome P-450 CYP1A1/genetics , DNA, Complementary/genetics , Female , Gene Expression/drug effects , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/cytology , Male , Neurons/metabolism , Oxidative Stress/drug effects , Phylogeny , Protein Precursors/metabolism , RNA, Messenger/genetics , Reproduction/drug effects , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...