Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38398941

ABSTRACT

This study presents an integrated approach to understanding fluid dynamics in Microfluidic Paper-Based Analytical Devices (µPADs), combining empirical investigations with advanced numerical modeling. Paper-based devices are recognized for their low cost, portability, and simplicity and are increasingly applied in health, environmental monitoring, and food quality analysis. However, challenges such as lack of flow control and the need for advanced detection methods have limited their widespread adoption. To address these challenges, our study introduces a novel numerical model that incorporates factors such as pore size, fiber orientation, and porosity, thus providing a comprehensive understanding of fluid dynamics across various saturation levels of paper. Empirical results focused on observing the wetted length in saturated paper substrates. The numerical model, integrating the Highly Simplified Marker and Cell (HSMAC) method and the High Order accuracy scheme Reducing Numerical Error Terms (HORNET) scheme, successfully predicts fluid flow in scenarios challenging for empirical observation, especially at high saturation levels. The model effectively mimicked the Lucas-Washburn relation for dry paper and demonstrated the increasing time requirement for fluid movement with rising saturation levels. It also accurately predicted faster fluid flow in Whatman Grade 4 filter paper compared with Grade 41 due to its larger pore size and forecasted an increased flow rate in the machine direction fiber orientation of Whatman Grade 4. These findings have significant implications for the design and application of µPADs, emphasizing the need for precise control of fluid flow and the consideration of substrate microstructural properties. The study's combination of empirical data and advanced numerical modeling marks a considerable advancement in paper-based microfluidics, offering robust frameworks for future development and optimization of paper-based assays.

2.
Biosensors (Basel) ; 13(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37366945

ABSTRACT

This research explores the dynamics of a fluidically loaded Bi-Material cantilever (B-MaC), a critical component of µPADs (microfluidic paper-based analytical devices) used in point-of-care diagnostics. Constructed from Scotch Tape and Whatman Grade 41 filter paper strips, the B-MaC's behavior under fluid imbibition is examined. A capillary fluid flow model is formulated for the B-MaC, adhering to the Lucas-Washburn (LW) equation, and supported by empirical data. This paper further investigates the stress-strain relationship to estimate the modulus of the B-MaC at various saturation levels and to predict the behavior of the fluidically loaded cantilever. The study shows that the Young's modulus of Whatman Grade 41 filter paper drastically decreases to approximately 20 MPa (about 7% of its dry-state value) upon full saturation. This significant decrease in flexural rigidity, in conjunction with the hygroexpansive strain and coefficient of hygroexpansion (empirically deduced to be 0.008), is essential in determining the B-MaC's deflection. The proposed moderate deflection formulation effectively predicts the B-MaC's behavior under fluidic loading, emphasizing the measurement of maximum (tip) deflection using interfacial boundary conditions for the B-MaC's wet and dry regions. This knowledge of tip deflection will prove instrumental in optimizing the design parameters of B-MaCs.


Subject(s)
Biosensing Techniques , Microfluidics , Software , Filtration , Lab-On-A-Chip Devices
3.
Micromachines (Basel) ; 14(5)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37241548

ABSTRACT

In this paper, the behavior of the Bi-Material Cantilever (B-MaC) response deflection upon fluidic loading was experimentally studied and modeled for bilayer strips. A B-MaC consists of a strip of paper adhered to a strip of tape. When fluid is introduced, the paper expands while the tape does not, which causes the structure to bend due to strain mismatch, similar to the thermal loading of bi-metal thermostats. The main novelty of the paper-based bilayer cantilevers is the mechanical properties of two different types of material layers, a top layer of sensing paper and a bottom layer of actuating tape, to create a structure that can respond to moisture changes. When the sensing layer absorbs moisture, it causes the bilayer cantilever to bend or curl due to the differential swelling between the two layers. The portion of the paper strip that gets wet forms an arc, and as the fluid advances and fully wets the B-MaC, the entire B-MaC assumes the shape of the initial arc. This study showed that paper with higher hygroscopic expansion forms an arc with a smaller radius of curvature, whereas thicker tape with a higher Young's modulus forms an arc with a larger radius of curvature. The results showed that the theoretical modeling could accurately predict the behavior of the bilayer strips. The significance of paper-based bilayer cantilevers lies in their potential applications in various fields, such as biomedicine, and environmental monitoring. In summary, the novelty and significance of paper-based bilayer cantilevers lie in their unique combination of sensing and actuating capabilities using a low-cost and environmentally friendly material.

4.
Biosensors (Basel) ; 13(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36979522

ABSTRACT

In this paper, we present a novel and cost-effective lab-on-paper microfluidics platform for performing ELISA autonomously, with no user intervention beyond adding the sample. The platform utilizes two Bi-Material Cantilever Valves placed in a specially designed housing. The integration of these valves in a specific channel network forms a complete fluidic logic circuit for performing ELISA on paper. The housing also incorporates an innovative reagent storage and release mechanism that minimizes variability in the volume of reagents released into the reagent pads. The platform design was optimized to minimize variance in the time of fluid wicking from the reagent pad, using a randomized design of experiment. The platform adheres to the World Health Organization's ASSURED principles. The optimized design was used to conduct an ELISA for detecting rabbit immunoglobulin G (IgG) in a buffer, with a limit of detection of 2.27 ng/mL and a limit of quantification of 8.33 ng/mL. This represents a 58% improvement over previous ELISA methods for detecting rabbit IgG in buffer using portable microfluidic technology.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Animals , Rabbits , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G/analysis , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Microfluidics/methods
5.
Micromachines (Basel) ; 13(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36144125

ABSTRACT

The novel paper-based Bi-Material Cantilever (B-MaC) valve allows the autonomous loading and control of multiple fluid reagents which contributes to the accurate operation of paper-based microfluidic devices utilized for biological and chemical sensing applications. In this paper, an extensive parametric study is presented to evaluate the effects of key geometric parameters of the valve, such as paper direction, cantilever width, paper type, tape type, and sample volume, in addition to the effects of relative humidity and temperature on the functionality of the B-MaC and to provide a better understanding of the rate of fluid flow and resulting deflection of the cantilever. Machine direction, cantilever width, paper type, and tape type were found to be important parameters that affect the B-MAC's activation time. It was also observed that the rate of fluid imbibition in the B-MaC is considerably affected by change in humidity for high (55 °C) and low (25 °C) temperatures, while humidity levels have no significant effect during imbibition in the B-MaC at an ambient temperature of 45 °C. It was also found that a minimum distance of 4 mm is required between the B-MaC and the stationary component to prevent accidental activation of the B-MaC prior to sample insertion when relative humidity is higher than 90% and temperature is lower than 35 °C. The rate of fluid imbibition that determines the wetted length of the B-MaC and the final deflection of the cantilever are critical in designing and fabricating point-of-care microfluidic paper-based devices. The B-MaC valve can be utilized in a fluidic circuit to sequentially load several reagents, in addition to the sample to the detection area.

SELECTION OF CITATIONS
SEARCH DETAIL
...