Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pharm Des ; 29(44): 3519-3531, 2023.
Article in English | MEDLINE | ID: mdl-38111114

ABSTRACT

Contemporary medical research increasingly focuses on the blood-brain barrier (BBB) to maintain homeostasis in healthy individuals and provide solutions for neurological disorders, including brain cancer. Specialized in vitro modules replicate the BBB's complex structure and signalling using micro-engineered perfusion devices and advanced 3D cell cultures, thus advancing the understanding of neuropharmacology. This research explores nanoparticle-based biomolecular engineering for precise control, targeting, and transport of theranostic payloads across the BBB using nanorobots. The review summarizes case studies on delivering therapeutics for brain tumors and neurological disorders, such as Alzheimer's, Parkinson's, and multiple sclerosis. It also examines the advantages and disadvantages of nano-robotics. In conclusion, integrating machine learning and AI with robotics aims to develop safe nanorobots capable of interacting with the BBB without adverse effects. This comprehensive review is valuable for extensive analysis and is of great significance to healthcare professionals, engineers specializing in robotics, chemists, and bioengineers involved in pharmaceutical development and neurological research, emphasizing transdisciplinary approaches.


Subject(s)
Artificial Intelligence , Brain Neoplasms , Humans , Brain , Blood-Brain Barrier , Drug Delivery Systems
2.
Recent Pat Nanotechnol ; 17(4): 359-377, 2023.
Article in English | MEDLINE | ID: mdl-35986540

ABSTRACT

COVID-19, caused by the SARS-CoV-2 virus, has been expanding. SARS-CoV caused an outbreak in early 2000, while MERS-CoV had a similar expansion of illness in early 2010. Nanotechnology has been employed for nasal delivery of drugs to conquer a variety of challenges that emerge during mucosal administration. The role of nanotechnology is highly relevant to counter this "virus" nano enemy. This technique directs the safe and effective distribution of accessible therapeutic choices using tailored nanocarriers, as well as the interruption of virion assembly, by preventing the early contact of viral spike glycoprotein with host cell surface receptors. This study summarises what we know about earlier SARS-CoV and MERS-CoV illnesses, with the goal of better understanding the recently discovered SARS-CoV-2 virus. It also explains the progress made so far in creating COVID-19 vaccines/ treatments using existing methods. Furthermore, we studied nanotechnology- based vaccinations and therapeutic medications that are now undergoing clinical trials and other alternatives.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines/therapeutic use , Nanotechnology/methods , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL