Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 7: 1230, 2016.
Article in English | MEDLINE | ID: mdl-27582756

ABSTRACT

Heat stress is one of the major problems in agriculturally important cereal crops, especially wheat. Here, we have constructed a subtracted cDNA library from the endosperm of HS-treated (42°C for 2 h) wheat cv. HD2985 by suppression subtractive hybridization (SSH). We identified ~550 recombinant clones ranging from 200 to 500 bp with an average size of 300 bp. Sanger's sequencing was performed with 205 positive clones to generate the differentially expressed sequence tags (ESTs). Most of the ESTs were observed to be localized on the long arm of chromosome 2A and associated with heat stress tolerance and metabolic pathways. Identified ESTs were BLAST search using Ensemble, TriFLD, and TIGR databases and the predicted CDS were translated and aligned with the protein sequences available in pfam and InterProScan 5 databases to predict the differentially expressed proteins (DEPs). We observed eight different types of post-translational modifications (PTMs) in the DEPs corresponds to the cloned ESTs-147 sites with phosphorylation, 21 sites with sumoylation, 237 with palmitoylation, 96 sites with S-nitrosylation, 3066 calpain cleavage sites, and 103 tyrosine nitration sites, predicted to sense the heat stress and regulate the expression of stress genes. Twelve DEPs were observed to have transmembrane helixes (TMH) in their structure, predicted to play the role of sensors of HS. Quantitative Real-Time PCR of randomly selected ESTs showed very high relative expression of HSP17 under HS; up-regulation was observed more in wheat cv. HD2985 (thermotolerant), as compared to HD2329 (thermosusceptible) during grain-filling. The abundance of transcripts was further validated through northern blot analysis. The ESTs and their corresponding DEPs can be used as molecular marker for screening or targeted precision breeding program. PTMs identified in the DEPs can be used to elucidate the thermotolerance mechanism of wheat-a novel step toward the development of "climate-smart" wheat.

2.
OMICS ; 19(10): 632-47, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26406536

ABSTRACT

Wheat is a staple food worldwide and provides 40% of the calories in the diet. Climate change and global warming pose a threat to wheat production, however, and demand a deeper understanding of how heat stress might impact wheat production and wheat biology. However, it is difficult to identify novel heat stress associated genes when the genomic information is not available. Wheat has a very large and complex genome that is about 37 times the size of the rice genome. The present study sequenced the whole transcriptome of the wheat cv. HD2329 at the flowering stage, under control (22°±3°C) and heat stress (42°C, 2 h) conditions using Illumina HiSeq and Roche GS-FLX 454 platforms. We assembled more than 26.3 and 25.6 million high-quality reads from the control and HS-treated tissues transcriptome sequences respectively. About 76,556 (control) and 54,033 (HS-treated) contigs were assembled and annotated de novo using different assemblers and a total of 21,529 unigenes were obtained. Gene expression profile showed significant differential expression of 1525 transcripts under heat stress, of which 27 transcripts showed very high (>10) fold upregulation. Cellular processes such as metabolic processes, protein phosphorylation, oxidations-reductions, among others were highly influenced by heat stress. In summary, these observations significantly enrich the transcript dataset of wheat available on public domain and show a de novo approach to discover the heat-responsive transcripts of wheat, which can accelerate the progress of wheat stress-genomics as well as the course of wheat breeding programs in the era of climate change.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Transcriptome , Triticum/genetics , Climate Change , Contig Mapping , Flowers/genetics , Gene Expression Profiling , Gene Ontology , Genome Size , High-Throughput Nucleotide Sequencing , Hot Temperature , Molecular Sequence Annotation , Stress, Physiological/genetics
3.
J Agric Food Chem ; 63(2): 700-6, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25552290

ABSTRACT

The nutritional benefits of soybean remain underutilized as the off-flavor present in it limits the consumption and acceptability among people. The aim of the present study was to unveil the effect of the phytohormones methyl jasmonate (MJ: 0, 50 µM, 1 mM, and 15 mM) and salicylic acid (SA: 0, 50 µM, 0.1 mM, and 10 mM) as elicitors on two contrasting off-flavor soybean varieties at different growth stages (1, bloom; 2, pod development; 3, seed development). The effects of two elicitors varied widely and were found to be dose dependent and growth stage independent. SA reduces the lipoxygenase (LOX) and hydroperoxide lyase (HPL) activity, which in turn resulted in reduction in the TBA number and carbonyl value in contrast to MJ. SA 0.1 mM is the most effective dose in reduction of off-flavor determining parameters and protein oxidation, and it reduces the LOX and HPL activity by 2.3- and 2.4-fold, respectively in "high off-flavor" cultivar 'Bragg' compared to "low off-flavor" cultivar 'DS 2706' which showed 1.4- and 2.1-fold, respectively. This reduction in protein oxidation is also supported by enhanced content of antioxidant enzymes. Thus, phytohormone SA can be used in reduction of off-flavor generation, more effectively than MJ treatments, in soybean.


Subject(s)
Acetates/pharmacology , Cyclopentanes/pharmacology , Flavoring Agents/analysis , Glycine max/chemistry , Glycine max/drug effects , Oxylipins/pharmacology , Salicylic Acid/pharmacology , Aldehyde-Lyases/metabolism , Cytochrome P-450 Enzyme System/metabolism , Flavoring Agents/metabolism , Lipoxygenase/metabolism , Oxidation-Reduction , Plant Proteins/metabolism , Glycine max/growth & development , Glycine max/metabolism
4.
Indian J Biochem Biophys ; 51(5): 396-406, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25630110

ABSTRACT

Antioxidant enzymes, besides being involved in various developmental processes, are known to be important for environmental stress tolerance in plants. In this study, the effect of treatment of 2.5 mM putrescine (Put), heat stress (HS -42 degrees C for 2 h) and their combination on the expression and activity of antioxidant enzymes was studied at pre-anthesis in the leaves of two wheat (Triticum aestivum L.) cultivars--HDR77 (thermotolerant) and HD2329 (thermosusceptible). We observed that 2.5 mM Put before HS significantly enhanced the transcript levels of superoxide dismutase (SOD), catalase (CAT), cytoplasmic and peroxisomal ascorbate peroxidase (cAPX, pAPX) in both the cultivars. However, the activities of antioxidant enzymes (SOD, CAT, APX and GR), as well as accumulation of antioxidants (ascorbic acid and total thiol content) were higher in HDR77 than in HD2329 in response to the treatment 2.5 mM Put + HS. No significant change was observed in the proline accumulation in response to HS and combined treatment of 2.5 mM Put + HS. A decrease in the H2O2 accumulation, lipid peroxidation and increase in cell membrane stability (CMS) were observed in response to 2.5 mM Put + HS treatment, as compared to HS treatment alone in both the cultivars; HDR77 was, however, more responsive to 2.5 mM Put + HS treatment. Put (2.5 mM) treatment at pre-anthesis thus modulated the defense mechanism responsible for the thermotolerance capacity of wheat under the heat stress. Elicitors like Put, therefore, need to be further studied for temporarily manipulating the thermotolerance capacity of wheat grown under the field conditions in view of the impending global climate change.


Subject(s)
Heat-Shock Proteins/metabolism , Oxidative Stress/physiology , Plant Leaves/physiology , Putrescine/administration & dosage , Reactive Oxygen Species/metabolism , Triticum/drug effects , Triticum/physiology , Heat-Shock Response , Oxidative Stress/drug effects , Plant Leaves/drug effects
5.
Indian J Biochem Biophys ; 50(2): 126-38, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23720887

ABSTRACT

Abiotic stress causes abrupt increase in the expression of stress-associated proteins, which provide tolerance by modulating the defense mechanism of plants. Small heat shock proteins (sHSPs) and anti-oxidant enzymes are important for environmental stress tolerance of the plants. In this study, two full-length cDNAs encoding small heat shock protein (sHSP) and superoxide dismutase (SOD), designated as TasHSP and SODI were identified and characterized from C-306 (thermotolerant) and PBW343 (thermosusceptible) cultivars of wheat (Triticum aestivum L.). An alpha crystalline domain was observed in TasHSP and manganese/iron binding domain in case of SODI. Quantitative real-time PCR showed very high transcript level of TasHSP and SOD in C-306 compared to PBW343 at different stages of growth and against differential heat stress (HS). Under differential HS at milky-dough stage, the fold change in transcript of both TasHSP and SOD was observed maximum in C-306, compared to PBW343. Protein profiling and isoenzymes analysis showed the expression of several heat-stable proteins and prominent isoenzymes of SOD in C-306, compared to PBW343. Scanning electron microscopy (SEM) of starch granules showed globular, well-shaped and more numbers of endospermic cells in C-306, compared to defragmented, irregular shaped and shrunken granules in case of PBW343 under HS treatment (42 degrees C for 2 h). Diurnal change in soluble starch synthase (SSS) activity showed an increase in the activity during afternoon (35 degrees C), compared to morning (29 degrees C) and evening (32 degrees C) in both the cultivars. Under heat stress (42 degrees C for 2 h), a drastic decrease in the SSS activity was observed, due to the thermal denaturation of the enzyme. Thermotolerance capacity analyzed using cell membrane stability (CMS) showed significantly higher CMS in case of C-306, compared to PBW343 at different stages of growth. Findings suggest that abundance of TasHSP and SODI during milky-dough stage plays a very important role in starch granule biosynthesis. The mechanism may be further exploited to develop tolerant wheat cultivar with high quality seeds.


Subject(s)
Gene Expression Regulation, Plant , Heat-Shock Proteins/metabolism , Starch/metabolism , Triticum/metabolism , Amino Acid Sequence , Base Sequence , Cell Membrane/metabolism , Cloning, Molecular , DNA, Complementary/metabolism , Gene Expression Profiling , Hot Temperature , Isoenzymes/metabolism , Microscopy, Electron, Scanning , Models, Biological , Molecular Sequence Data , Phylogeny , Real-Time Polymerase Chain Reaction/methods , Sequence Homology, Amino Acid , Starch Synthase/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL