Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Malar J ; 21(1): 247, 2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36030292

ABSTRACT

BACKGROUND: Plasmodium falciparum (Pf) sporozoite (SPZ) vaccines are the only candidate malaria vaccines that induce > 90% vaccine efficacy (VE) against controlled human malaria infection and the only malaria vaccines to have achieved reproducible VE against malaria in adults in Africa. The goal is to increase the impact and reduce the cost of PfSPZ vaccines by optimizing vaccine potency and manufacturing, which will benefit from identification of immunological responses contributing to protection in humans. Currently, there is no authentic animal challenge model for assessing P. falciparum malaria VE. Alternatively, Plasmodium knowlesi (Pk), which infects humans and non-human primates (NHPs) in nature, can be used to experimentally infect rhesus macaques (Macaca mulatta) to assess VE. METHODS: Sanaria has, therefore, produced purified, vialed, cryopreserved PkSPZ and conducted challenge studies in several naïve NHP cohorts. In the first cohort, groups of three rhesus macaques each received doses of 5 × 102, 2.5 × 103, 1.25 × 104 and 2.5 × 104 PkSPZ administered by direct venous inoculation. The infectivity of 1.5 × 103 PkSPZ cryopreserved with an altered method and of 1.5 × 103 PkSPZ cryopreserved for four years was tested in a second and third cohort of rhesus NHPs. The lastly, three pig-tailed macaques (Macaca nemestrina), a natural P. knowlesi host, were challenged with 2.5 × 103 PkSPZ cryopreserved six years earlier. RESULTS: In the first cohort, all 12 animals developed P. knowlesi parasitaemia by thick blood smear, and the time to positivity (prepatent period) followed a non-linear 4-parameter logistic sigmoidal model with a median of 11, 10, 8, and 7 days, respectively (r2 = 1). PkSPZ cryopreserved using a modified rapid-scalable method infected rhesus with a pre-patent period of 10 days, as did PkSPZ cryopreserved four years prior to infection, similar to the control group. Cryopreserved PkSPZ infected pig-tailed macaques with median time to positivity by thin smear, of 11 days. CONCLUSION: This study establishes the capacity to consistently infect NHPs with purified, vialed, cryopreserved PkSPZ, providing a foundation for future studies to probe protective immunological mechanisms elicited by PfSPZ vaccines that cannot be established in humans.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Plasmodium knowlesi , Adult , Animals , Humans , Macaca mulatta , Plasmodium falciparum , Sporozoites
2.
Mem Inst Oswaldo Cruz ; 117: e210287, 2022.
Article in English | MEDLINE | ID: mdl-35730803

ABSTRACT

BACKGROUND: It has been demonstrated that proteins expressed by liver-stage Plasmodium parasites can inhibit the translocation of transcription factors to the nucleus of different cells. This process would hinder the expression of immune genes, such as the CCL20 chemokine. OBJECTIVE: Since CCR6 is the only cognate receptor for CCL20, we investigated the importance of this chemokine-receptor axis against rodent malaria. METHODS: CCR6-deficient (KO) and wild-type (WT) C57BL/6 mice were challenged with Plasmodium berghei (Pb) NK65 sporozoites or infected red blood cells (iRBCs). Liver parasitic cDNA, parasitemia and serum cytokine concentrations were respectively evaluated through reverse transcription-polymerase chain reaction (RT-PCR), staining thin-blood smears with Giemsa solution, and enzyme-linked immunosorbent assay (ELISA). FINDINGS: Although the sporozoite challenges yielded similar liver parasitic cDNA and parasitemia, KO mice presented a prolonged survival than WT mice. After iRBC challenges, KO mice kept displaying higher survival rates as well as a decreased IL-12 p70 concentration in the serum than WT mice. CONCLUSION: Our data suggest that malaria triggered by PbNK65 liver- or blood-stage forms elicit a pro-inflammatory environment that culminates with a decreased survival of infected C57BL/6 mice.


Subject(s)
Malaria , Plasmodium berghei , Animals , DNA, Complementary , Malaria/parasitology , Mice , Mice, Inbred C57BL , Parasitemia/parasitology , Receptors, CCR6
3.
Mem. Inst. Oswaldo Cruz ; 117: e210287, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1386359

ABSTRACT

BACKGROUND It has been demonstrated that proteins expressed by liver-stage Plasmodium parasites can inhibit the translocation of transcription factors to the nucleus of different cells. This process would hinder the expression of immune genes, such as the CCL20 chemokine. OBJECTIVE Since CCR6 is the only cognate receptor for CCL20, we investigated the importance of this chemokine-receptor axis against rodent malaria. METHODS CCR6-deficient (KO) and wild-type (WT) C57BL/6 mice were challenged with Plasmodium berghei (Pb) NK65 sporozoites or infected red blood cells (iRBCs). Liver parasitic cDNA, parasitemia and serum cytokine concentrations were respectively evaluated through reverse transcription-polymerase chain reaction (RT-PCR), staining thin-blood smears with Giemsa solution, and enzyme-linked immunosorbent assay (ELISA). FINDINGS Although the sporozoite challenges yielded similar liver parasitic cDNA and parasitemia, KO mice presented a prolonged survival than WT mice. After iRBC challenges, KO mice kept displaying higher survival rates as well as a decreased IL-12 p70 concentration in the serum than WT mice. CONCLUSION Our data suggest that malaria triggered by PbNK65 liver- or blood-stage forms elicit a pro-inflammatory environment that culminates with a decreased survival of infected C57BL/6 mice.

4.
Vaccine ; 35(50): 6990-7000, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29089194

ABSTRACT

Adenovirus (Ad) is thought to be one of the most promising platforms for a malaria vaccine targeted against its liver stages, because of its ability to induce a strong T-cell response against a transgene. However, a further improvement of this platform is needed in order to elicit another arm of the immunity, i.e. humoral response, against malaria. In order to augment immunogenicity and protective efficacy of Ad-based malaria vaccine, we inserted B-cell, as well as CD4+ T-cell, epitopes of Plasmodium falciparum circumsporozoite protein (PfCSP) into the capsid protein, Hexon, and the core protein, VII (pVII), of Ad, respectively, in addition to the PfCSP transgene. Insertion of PfCSP-derived B cell epitope to Hexon significantly enhanced the epitope-specific antibody response compared to AdPfCSP, an Ad vaccine expressing only PfCSP transgene. PfCSP-derived CD4+ T-cell epitope insertion into pVII augmented not only PfCSP-specific CD4+ T-cell response but also anti-PfCSP antibody response. Finally, mice immunized with AdPfCSP having both Hexon and pVII modifications were more protected than AdPfCSP or Hexon-modified AdPfCSP against challenge with transgenic rodent malaria parasites expressing the PfCSP. Overall, this study has demonstrated that Hexon and pVII-modified AdPfCSP vaccine is a promising malaria vaccine which induces strong PfCSP-specific humoral, CD4+ T-cell, and CD8+ T-cell responses and protects against infection with transgenic malaria parasites expressing the PfCSP.


Subject(s)
Adenoviridae/genetics , Drug Carriers , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Malaria Vaccines/immunology , Malaria/prevention & control , Protozoan Proteins/immunology , Animals , Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/immunology , Disease Models, Animal , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/genetics , Female , Malaria Vaccines/administration & dosage , Malaria Vaccines/genetics , Mice, Inbred BALB C , Protozoan Proteins/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Proteins/genetics
5.
PLoS One ; 12(3): e0174306, 2017.
Article in English | MEDLINE | ID: mdl-28339487

ABSTRACT

Cell cycle arrest can be imposed by inactivating the anaphase promoting complex (APC). In S. cerevisiae this arrest has been reported to stabilize a metaphase-like intermediate in which the nuclear envelope spans the bud neck, while chromatin repeatedly translocates between the mother and bud domains. The present investigation was undertaken to learn how other features of nuclear organization are affected upon depletion of the APC activator, Cdc20. We observe that the spindle pole bodies and the spindle repeatedly translocate across the narrow orifice at the level of the neck. Nevertheless, we find that the nucleolus (organized around rDNA repeats on the long right arm of chromosome XII) remains in the mother domain, marking the polarity of the nucleus. Accordingly, chromosome XII is polarized: TelXIIR remains in the mother domain and its centromere is predominantly located in the bud domain. In order to learn why the nucleolus remains in the mother domain, we studied the impact of inhibiting rRNA synthesis in arrested cells. We observed that this fragments the nucleolus and that these fragments entered the bud domain. Taken together with earlier observations, the restriction of the nucleolus to the mother domain therefore can be attributed to its massive structure. We also observed that inactivation of septins allowed arrested cells to complete the cell cycle, that the alternative APC activator, Cdh1, was required for completion of the cell cycle and that induction of Cdh1 itself caused arrested cells to progress to the end of the cell cycle.


Subject(s)
Cell Cycle Checkpoints/physiology , Cell Nucleolus/metabolism , Saccharomyces cerevisiae/metabolism , Septins/metabolism , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Septins/genetics
6.
Antibodies (Basel) ; 6(3)2017 Aug 23.
Article in English | MEDLINE | ID: mdl-31548526

ABSTRACT

Malaria is a mosquito-borne infectious disease caused by the parasite Plasmodium spp. Malaria continues to have a devastating impact on human health. Sporozoites are the infective forms of the parasite inside mosquito salivary glands. Circumsporozoite protein (CSP) is a major and immunodominant protective antigen on the surface of Plasmodium sporozoites. Here, we report a generation of specific monoclonal antibodies that recognize the central repeat and C-terminal regions of P. falciparum CSP. The monoclonal antibodies 3C1, 3C2, and 3D3-specific for the central repeat region-have higher titers and protective efficacies against challenge with sporozoites compared with 2A10, a gold standard monoclonal antibody that was generated in early 1980s.

7.
Front Microbiol ; 6: 69, 2015.
Article in English | MEDLINE | ID: mdl-25729379

ABSTRACT

Although CD8(+) T cells are shown to mediate the protective immunity against the liver stages of malaria parasites in mice, whether the direct presentation of malaria antigen by major histocompatibility complex (MHC) class I molecules expressed on the liver of infected host is required for anti-plasmodial activity of CD8(+) T cells is still unknown. Presently, there is only one CD8(+) epitope, SYVPSAEQI, derived from the circumsporozoite protein of Plasmodium yoelii (PyCS), that mediates anti-malarial protection and is presented in the context of a K(d) molecule. Therefore, to investigate the mode of anti-plasmodial activity of CD8+ T cells, we have previously generated C57BL/6 transgenic (Tg) mice, in which a K(d) molecule is expressed only on hepatocyte (Alb-K(d)) or dendritic cell (DC; CD11c-K(d)), by using albumin promoter or CD11c promoter, respectively. We have also generated MHC-I-K(d) Tg mice, which express the K(d) molecule under the MHC class I (MHC-I) promoter, as a positive control. From splenocytes collected from CD11c-K(d) Tg mice immunized with a synthetic peptide, SYVPSAEQI, which corresponds to the CD8(+) T-cell epitope of PyCS, emulsified in incomplete Freund's adjuvant , a PyCS-specific CD8(+) T-cell line was generated. This PyCS-specific CD8(+)T-cell line was then adoptively transferred into a cohort of either MHC-K(d) Tg or Alb-K(d) Tg mice listed above, as well as wild-type C57BL/6 mice. Then both transferred and non-transferred mice were challenged with live malaria parasites. We found that the adoptive transfer of a PyCS-specific CD8(+) T-cell line resulted in a significant inhibition of the parasite burden in the liver of Alb-K(d) Tg, as well as MHC-I-K(d) Tg mice, but not of C57BL/6 mice. These results indicate that the K(d) molecule expressed by hepatocytes is sufficient in mediating the anti-plasmodial activity of PyCS-specific CD8(+) T cells in vivo.

8.
Eukaryot Cell ; 13(11): 1393-402, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25172767

ABSTRACT

In many organisms, the geometry of encounter of haploid germ cells is arbitrary. In Saccharomyces cerevisiae, the resulting zygotes have been seen to bud asymmetrically in several directions as they produce diploid progeny. What mechanisms account for the choice of direction, and do the mechanisms directing polarity change over time? Distinct subgroups of cortical "landmark" proteins guide budding by haploid versus diploid cells, both of which require the Bud1/Rsr1 GTPase to link landmarks to actin. We observed that as mating pairs of haploid cells form zygotes, bud site specification progresses through three phases. The first phase follows disassembly and limited scattering of proteins that concentrated at the zone of cell contact, followed by their reassembly to produce a large medial bud. Bud1 is not required for medial placement of the initial bud. The second phase produces a contiguous bud(s) and depends on axial landmarks. As the titer of the Axl1 landmark diminishes, the third phase ultimately redirects budding toward terminal sites and is promoted by bipolar landmarks. Thus, following the initial random encounter that specifies medial budding, sequential spatial choices are orchestrated by the titer of a single cortical determinant that determines whether successive buds will be contiguous to their predecessors.


Subject(s)
Cell Division/genetics , Cell Polarity/genetics , Germ Cells/cytology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/genetics , Actins/metabolism , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Diploidy , Haploidy , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , rab GTP-Binding Proteins/metabolism
9.
Biomolecules ; 2(1): 23-33, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-24970125

ABSTRACT

Hydrodynamic tail vein (HTV) delivery is a simple and rapid tail vein injection method of a high volume of naked plasmid DNA resulting in high levels of foreign gene expression in organs, especially the liver. Compared to other organs, HTV delivery results in more than a 1000-fold higher transgene expression in liver. After being bitten by malaria-infected mosquitoes, malaria parasites transiently infect the host liver and form the liver stages. The liver stages are known to be the key target for CD8+ T cells that mediate protective anti-malaria immunity in an animal model. Therefore, in this study, we utilized the HTV delivery technique as a tool to determine the in vivo cytotoxic effect of malaria antigen-specific CD8+ T cells. Two weeks after mice were immunized with recombinant adenoviruses expressing malarial antigens, the immunized mice as well as naïve mice were challenged by HTV delivery of naked plasmid DNA co-encoding respective antigen together with luciferase using dual promoters. Three days after the HTV challenge, non-invasive whole-body bioluminescent imaging was performed. The images demonstrate in vivo activity of CD8+ T cells against malaria antigen-expressing cells in liver.

10.
Vaccine ; 29(43): 7335-42, 2011 Oct 06.
Article in English | MEDLINE | ID: mdl-21807053

ABSTRACT

Immunization of BALB/c mice with irradiated sporozoites (IrSp) of Plasmodium yoelii can lead to sterile immunity. The circumsporozoite protein (CSP) plays a dominant role in protection. Nevertheless after hyper-immunization with IrSp, complete protection is obtained in CSP-transgenic BALB/c mice that are T-cell tolerant to the CSP and cannot produce antibodies [CSP-Tg/JhT(-/-)]. This protection is mediated exclusively by CD8(+) T cells [1]. To identify the non-CSP protective T cell antigens, we studied the properties of 34 P. yoelii sporozoite antigens that are predicted to be secreted and to contain strong Kd-restricted CD8(+) T cell epitopes. The synthetic peptides corresponding to the epitopes were used to screen for the presence of peptide-specific CD8(+) T cells secreting interferon-γ (IFN-γ) in splenocytes from CSP-Tg/JhT(-/-) BALB/c mice hyper immunized with IrSp. However, the numbers of IFN-γ-secreting splenocytes specific for the non-CSP antigen-derived peptides were 20-100 times lower than those specific for the CSP-specific peptide. When mice were immunized with recombinant adenoviruses expressing selected non-CSP antigens, the animals were not protected against challenge with P. yoelii sporozoites although large numbers of CD8(+) specific T cells were generated.


Subject(s)
Antigens, Protozoan/immunology , Epitopes, T-Lymphocyte/immunology , Malaria Vaccines/immunology , Plasmodium yoelii/immunology , Protozoan Proteins/immunology , Sporozoites/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Female , Immunization , Interferon-gamma , Malaria/immunology , Malaria/prevention & control , Mice , Mice, Inbred BALB C , Mice, Transgenic , Sporozoites/radiation effects
11.
J Clin Invest ; 120(10): 3688-701, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20811151

ABSTRACT

Although adenovirus (Ad) has been regarded as an excellent vaccine vector, there are 2 major drawbacks to using this platform: (a) Ad-based vaccines induce a relatively weak humoral response against encoded transgenes, and (b) preexisting immunity to Ad is highly prevalent among the general population. To overcome these obstacles, we constructed an Ad-based malaria vaccine by inserting a B cell epitope derived from a Plasmodium yoelii circumsporozoite (CS) protein (referred to as the PyCS-B epitope) into the capsid proteins of WT/CS-GFP, a recombinant Ad expressing P. yoelii CS protein and GFP as its transgene. Multiple vaccinations with the capsid-modified Ad induced a substantially increased level of protection against subsequent malaria challenge in mice when compared with that of unmodified WT/CS-GFP. Increased protection correlated with augmented antibody responses against the PyCS-B epitope expressed in the capsid. Furthermore, replacement of hypervariable region 1 (HVR1) of the Ad capsid proteins with the PyCS-B epitope circumvented neutralization of the modified Ad by preexisting Ad-specific antibody, both in vivo and in vitro. Importantly, the immunogenicity of the Ad-containing PyCS-B epitope in the HVR1 and a P. yoelii CS transgene was maintained. Overall, this study demonstrates that the HVR1-modifed Ad vastly improves upon Ad as a promising malaria vaccine platform candidate.


Subject(s)
Adenoviridae/immunology , Capsid Proteins/immunology , Epitopes, B-Lymphocyte/immunology , Genetic Vectors/immunology , Plasmodium yoelii/immunology , Protozoan Proteins/immunology , Adenoviridae/genetics , Animals , Antibodies, Protozoan/immunology , Base Sequence , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred BALB C , Molecular Sequence Data
12.
J Infect Dis ; 196(12): 1827-35, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-18190264

ABSTRACT

Immunity to Plasmodium liver stages in individuals in malaria-endemic areas is inextricably linked to concomitant blood-stage parasitemia. Although Plasmodium sporozoite infection induces measurable CD8+ T cell responses, the development of memory T cells during active erythrocytic infection remains uncharacterized. Using transgenic T cells, we assessed antigen-specific effector CD8+ T cell responses induced by normal (NorSpz) and radiation-attenuated (IrrSpz) Plasmodium yoelii sporozoites. The magnitude, phenotypic activation, and differentiation pathway of CD8+ T cells were similarly induced by NorSpz and IrrSpz. Moreover, in normal mice, memory T cells elicited after priming with NorSpz and IrrSpz generated identical recall responses after a heterologous boost strategy. Furthermore, these recall responses exhibited comparable in vivo antiparasite activity. Our results indicate that sporozoites that retain their infective capacity induce memory CD8+ T cells that are robustly recalled by secondary immunization. Thus, erythrocytic infection does not preclude the establishment of memory CD8+ T cell responses to malarial liver stages.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Liver/parasitology , Malaria/immunology , Plasmodium yoelii/immunology , Animals , Anopheles/parasitology , Epitopes, T-Lymphocyte/immunology , Female , Malaria/blood , Malaria/parasitology , Malaria Vaccines/immunology , Mice , Mice, Inbred BALB C , Plasmodium yoelii/growth & development , Plasmodium yoelii/radiation effects , Sporozoites/growth & development , Sporozoites/immunology , Sporozoites/radiation effects , Vaccinia virus/genetics , Vaccinia virus/immunology
13.
Eur J Immunol ; 36(5): 1179-86, 2006 May.
Article in English | MEDLINE | ID: mdl-16598821

ABSTRACT

Protective immune responses against malaria are induced by immunization with radiation-attenuated Plasmodium sporozoites. In contrast, non-viable, heat-killed sporozoites do not induce protection, emphasizing the requirement for live parasites to achieve effective immune responses. Using an experimental system with CD8+ T cells from T cell receptor-transgenic mice, we analyzed the primary CD8+ T cell responses elicited by heat-killed inactivated sporozoites. We found that the numbers of specific CD8+ T cells induced were much lower compared to when immunizing with attenuated sporozoites; however, the kinetics of activation and the phenotype of these T cells were similar in both groups. Despite their low frequency after priming, high numbers of specific CD8+ T cells were observed after boosting with a recombinant vaccinia virus. Upon induction of the recall response, the same level of protection was observed when either heat-killed or attenuated sporozoites were used for priming. We propose that live parasites are not critical for the induction of memory T cell populations against the malaria liver stages.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Malaria Vaccines/immunology , Plasmodium yoelii/immunology , Sporozoites/immunology , Animals , Female , Hyaluronan Receptors/analysis , Immunization , Immunophenotyping , Mice , Mice, Inbred BALB C , Vaccines, Inactivated/immunology , Vaccinia virus/immunology
14.
J Exp Med ; 203(3): 599-606, 2006 Mar 20.
Article in English | MEDLINE | ID: mdl-16505139

ABSTRACT

Resistance to several prevalent infectious diseases requires both cellular and humoral immune responses. T cell immunity is initiated by mature dendritic cells (DCs) in lymphoid organs, whereas humoral responses to most antigens require further collaboration between primed, antigen-specific helper T cells and naive or memory B cells. To determine whether antigens delivered to DCs in lymphoid organs induce T cell help for antibody responses, we targeted a carrier protein, ovalbumin (OVA), to DCs in the presence of a maturation stimulus and assayed for antibodies to a hapten, (4-hydroxy-3-nitrophenyl) acetyl (NP), after boosting with OVA-NP. A single DC-targeted immunization elicited long-lived T cell helper responses to the carrier protein, leading to large numbers of antibody-secreting cells and high titers of high-affinity antihapten immunoglobulin Gs. Small doses of DC-targeted OVA induced higher titers and a broader spectrum of anti-NP antibody isotypes than large doses of OVA in alum adjuvant. Similar results were obtained when the circumsporozoite protein of Plasmodium yoelii was delivered to DCs. We conclude that antigen targeting to DCs combined with a maturation stimulus produces broad-based and long-lived T cell help for humoral immune responses.


Subject(s)
Antibody Formation/immunology , Antigen Presentation/immunology , B-Lymphocytes/immunology , Dendritic Cells/immunology , T-Lymphocytes/immunology , Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , Animals , Antibody Formation/drug effects , Antigen Presentation/drug effects , Chickens , Haptens/immunology , Humans , Immunization/methods , Immunoglobulin G/immunology , Immunologic Memory/drug effects , Immunologic Memory/immunology , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Plasmodium yoelii/immunology , Protozoan Proteins/immunology
15.
J Exp Med ; 201(2): 201-9, 2005 Jan 17.
Article in English | MEDLINE | ID: mdl-15657290

ABSTRACT

The yellow fever vaccine 17D (17D) is safe, and after a single immunizing dose, elicits long-lasting, perhaps lifelong protective immunity. One of the major challenges facing delivery of human vaccines in underdeveloped countries is the need for multiple injections to achieve full efficacy. To examine 17D as a vector for microbial T cell epitopes, we inserted the H-2K(d)-restricted CTL epitope of the circumsporozoite protein (CS) of Plasmodium yoelii between 17D nonstructural proteins NS2B and NS3. The recombinant virus, 17D-Py, was replication competent and stable in vitro and in vivo. A single subcutaneous injection of 10(5) PFU diminished the parasite burden in the liver by approximately 70%. The high level of protection lasted between 4 and 8 wk after immunization, but a significant effect was documented even 24 wk afterwards. Thus, the immunogenicity of a foreign T cell epitope inserted into 17D mimics some of the remarkable properties of the human vaccine. Priming with 17D-Py followed by boosting with irradiated sporozoites conferred sterile immunity to 90% of the mice. This finding indicates that the immune response of vaccine-primed individuals living in endemic areas could be sustained and magnified by the bite of infected mosquitoes.


Subject(s)
Epitopes/immunology , Malaria/prevention & control , T-Lymphocytes, Cytotoxic/immunology , Yellow Fever Vaccine/immunology , Animals , Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Humans , Malaria/immunology , Mice , Plasmodium yoelii/immunology , Yellow Fever Vaccine/genetics , Yellow fever virus/genetics , Yellow fever virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...