Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Neural Eng ; 21(5)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39178904

ABSTRACT

Objective. Transcranial ultrasound (US) stimulation serves as an external input to a neuron, and thus the evoked response relies on neurons' intrinsic properties. Neural activity is limited to a couple hundred hertz and often exhibits preference to input frequencies. Accordingly, US pulsed at specific physiologic pulse repetition frequencies (PRFs) may selectively engage neurons with the corresponding input frequency preference. However, most US parametric studies examine the effects of supraphysiologic PRFs. It remains unclear whether pulsing US at different physiologic PRFs could activate distinct neurons in the awake mammalian brain.Approach. We recorded cellular calcium responses of individual motor cortex neurons to US pulsed at PRFs of 10, 40, and 140 Hz in awake mice. We compared the evoked responses across these PRFs in the same neurons. To further understand the cell-type dependent effects, we categorized the recorded neurons as parvalbumin positive fast spiking interneurons or putative excitatory neurons and analyzed single-cell mechanosensitive channel expression in mice and humans using the Allen Brain Institute's RNA-sequencing databases.Main results. We discovered that many neurons were preferentially activated by only one PRF and different PRFs selectively engaged distinct neuronal populations. US-evoked cellular calcium responses exhibited the same characteristics as those naturally occurring during spiking, suggesting that US increases intrinsic neuronal activity. Furthermore, evoked responses were similar between fast-spiking inhibitory neurons and putative excitatory neurons. Thus, variation in individual neuron's cellular properties dominates US-evoked response heterogeneity, consistent with our observed cell-type independent expression patterns of mechanosensitive channels across individual neurons in mice and humans. Finally, US transiently increased network synchrony without producing prolonged over-synchronization that could be detrimental to neural circuit functions.Significance. These results highlight the feasibility of activating distinct neuronal subgroups by varying PRF and the potential to improve neuromodulation effects by combining physiologic PRFs.


Subject(s)
Mice, Inbred C57BL , Neurons , Ultrasonic Waves , Animals , Mice , Neurons/physiology , Motor Cortex/physiology , Male , Humans , Female
2.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38585918

ABSTRACT

Transcranial ultrasound activates mechanosensitive cellular signaling and modulates neural dynamics. Given that intrinsic neuronal activity is limited to a couple hundred hertz and often exhibits frequency preference, we examined whether pulsing ultrasound at physiologic pulse repetition frequencies (PRFs) could selectively influence neuronal activity in the mammalian brain. We performed calcium imaging of individual motor cortex neurons, while delivering 0.35 MHz ultrasound at PRFs of 10, 40, and 140 Hz in awake mice. We found that most neurons were preferentially activated by only one of the three PRFs, highlighting unique cellular effects of physiologic PRFs. Further, ultrasound evoked responses were similar between excitatory neurons and parvalbumin positive interneurons regardless of PRFs, indicating that individual cell sensitivity dominates ultrasound-evoked effects, consistent with the heterogeneous mechanosensitive channel expression we found across single neurons in mice and humans. These results highlight the feasibility of tuning ultrasound neuromodulation effects through varying PRFs.

3.
Vibration ; 5(4): 692-710, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36299552

ABSTRACT

Silent speech interfaces (SSIs) enable speech recognition and synthesis in the absence of an acoustic signal. Yet, the archetypal SSI fails to convey the expressive attributes of prosody such as pitch and loudness, leading to lexical ambiguities. The aim of this study was to determine the efficacy of using surface electromyography (sEMG) as an approach for predicting continuous acoustic estimates of prosody. Ten participants performed a series of vocal tasks including sustained vowels, phrases, and monologues while acoustic data was recorded simultaneously with sEMG activity from muscles of the face and neck. A battery of time-, frequency-, and cepstral-domain features extracted from the sEMG signals were used to train deep regression neural networks to predict fundamental frequency and intensity contours from the acoustic signals. We achieved an average accuracy of 0.01 ST and precision of 0.56 ST for the estimation of fundamental frequency, and an average accuracy of 0.21 dB SPL and precision of 3.25 dB SPL for the estimation of intensity. This work highlights the importance of using sEMG as an alternative means of detecting prosody and shows promise for improving SSIs in future development.

SELECTION OF CITATIONS
SEARCH DETAIL