Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Rice (N Y) ; 17(1): 33, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727876

ABSTRACT

BACKGROUND: The lack of stable-high yielding and direct-seeded adapted varieties with better germination ability from deeper soil depth and availability of molecular markers are major limitation in achieving the maximum yield potential of rice under water and resource limited conditions. Development of high-throughput and trait-linked markers are of great interest in genomics-assisted breeding. The aim of present study was to develop and validate novel KASP (Kompetitive Allele-Specific PCR) markers associated with traits improving germination and seedling vigor of deep sown direct seeded rice (DSR). RESULTS: Out of 58 designed KASP assays, four KASP assays did not show any polymorphism in any of the eleven genetic backgrounds considered in the present study. The 54 polymorphic KASP assays were then validated for their robustness and reliability on the F1s plants developed from eight different crosses considered in the present study. The third next validation was carried out on 256 F3:F4 and 713 BC3F2:3 progenies. Finally, the reliability of the KASP assays was accessed on a set of random 50 samples from F3:F4 and 80-100 samples from BC3F2:3 progenies using the 10 random markers. From the 54 polymorphic KASP, based on the false positive rate, false negative rate, KASP utility in different genetic backgrounds and significant differences in the phenotypic values of the positive (desirable) and negative (undesirable) traits, a total of 12 KASP assays have been selected. These 12 KASP include 5 KASP on chromosome 3, 1 on chromosome 4, 3 on chromosome 7 and 3 on chromosome 8. The two SNPs lying in the exon regions of LOC_Os04g34290 and LOC_Os08g32100 led to non-synonymous mutations indicating a possible deleterious effect of the SNP variants on the protein structure. CONCLUSION: The present research work will provide trait-linked KASP assays, improved breeding material possessing favourable alleles and breeding material in form of expected pre-direct-seeded adapted rice varieties. The marker can be utilized in introgression program during pyramiding of valuable QTLs/genes providing adaptation to rice under DSR. The functional studies of the genes LOC_Os04g34290 and LOC_Os08g32100 possessing two validated SNPs may provide valuable information about these genes.

3.
Crit Rev Biotechnol ; : 1-27, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453184

ABSTRACT

Natural fibers have garnered considerable attention owing to their desirable textile properties and advantageous effects on human health. Nevertheless, natural fibers lag behind synthetic fibers in terms of both quality and yield, as these attributes are largely genetically determined. In this article, a comprehensive overview of the natural and synthetic fiber production landscape over the last 10 years is presented, with a particular focus on the role of scientific breeding techniques in improving fiber quality traits in key crops like cotton, hemp, ramie, and flax. Additionally, the article delves into cutting-edge genomics-assisted breeding techniques, including QTL mapping, genome-wide association studies, transgenesis, and genome editing, and their potential role in enhancing fiber quality traits in these crops. A user-friendly compendium of 11226 available QTLs and significant marker-trait associations derived from 136 studies, associated with diverse fiber quality traits in these crops is furnished. Furthermore, the potential applications of transcriptomics in these pivotal crops, elucidating the distinct genes implicated in augmenting fiber quality attributes are investigated. Additionally, information on 11257 candidate/characterized or cloned genes sourced from various studies, emphasizing their key role in the development of high-quality fiber crops is collated. Additionally, the review sheds light on the current progress of marker-assisted selection for fiber quality traits in each crop, providing detailed insights into improved cultivars released for different fiber crops. In conclusion, it is asserted that the application of modern breeding tools holds tremendous potential in catalyzing a transformative shift in the textile industry.


Natural fibers possess desirable properties, but they often lag behind synthetic fibers in terms of both quality and quantity. Genomic-assisted breeding has the potential to improve fiber quality traits in cotton, hemp, ramie, and flax. Utilizing available QTLs, marker-trait associations, and candidate genes can contribute to the development of superior fiber crops, underscoring the significance of advanced breeding tools.

4.
Sci Rep ; 14(1): 5730, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459066

ABSTRACT

Rice output has grown globally, yet abiotic factors are still a key cause for worry. Salinity stress seems to have the more impact on crop production out of all abiotic stresses. Currently one of the most significant challenges in paddy breeding for salinity tolerance with the help of QTLs, is to determine the QTLs having the best chance of improving salinity tolerance with the least amount of background noise from the tolerant parent. Minimizing the size of the QTL confidence interval (CI) is essential in order to primarily include the genes responsible for salinity stress tolerance. By considering that, a genome-wide meta-QTL analysis on 768 QTLs from 35 rice populations published from 2001 to 2022 was conducted to identify consensus regions and the candidate genes underlying those regions responsible for the salinity tolerance, as it reduces the confidence interval (CI) to many folds from the initial QTL studies. In the present investigation, a total of 65 MQTLs were extracted with an average CI reduced from 17.35 to 1.66 cM including the smallest of 0.01 cM. Identification of the MQTLs for individual traits and then classifying the target traits into correlated morphological, physiological and biochemical aspects, resulted in more efficient interpretation of the salinity tolerance, identifying the candidate genes and to understand the salinity tolerance mechanism as a whole. The results of this study have a huge potential to improve the rice genotypes for salinity tolerance with the help of MAS and MABC.


Subject(s)
Oryza , Oryza/genetics , Salt Tolerance/genetics , Plant Breeding/methods , Quantitative Trait Loci , Genomics , Salinity
5.
Rice (N Y) ; 16(1): 46, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848638

ABSTRACT

BACKGROUND: Ongoing large-scale shift towards direct seeded rice (DSR) necessitates a convergence of breeding and genetic approaches for its sustenance and harnessing natural resources and environmental benefits. Improving seedling vigour remains key objective for breeders working with DSR. The present study aims to understand the genetic control of seedling vigour in deep sown DSR. Combined genome-wide association mapping, linkage mapping, fine mapping, RNA-sequencing to identify candidate genes and validation of putative candidate genes were performed in the present study. RESULTS: Significant phenotypic variations were observed among genotypes in both F3:4:5 and BC2F2:3 populations. The mesocotyl length showed significant positive correlation with %germination, root and shoot length. The 881 kb region on chromosome 7 reported to be associated with mesocotyl elongation. RNA-seq data and RT-PCR results identified and validated seven potential candidate genes. The four promising introgression lines free from linkage drag and with longer mesocotyl length, longer root length, semi-dwarf plant height have been identified. CONCLUSION: The study will provide rice breeders (1) the pre breeding material in the form of anticipated DSR adapted introgression lines possessing useful traits and alleles improving germination under deep sown DSR field conditions (2) the base for the studies involving functional characterization of candidate genes. The development and utilization of improved introgression lines and molecular markers may play an important role in genomics-assisted breeding (GAB) during the pyramiding of valuable genes providing adaptation to rice under DSR. Our results offer a robust and reliable package that can contribute towards enhancing genetic gains in direct seeded rice breeding programs.

6.
Genomics ; 114(2): 110269, 2022 03.
Article in English | MEDLINE | ID: mdl-35065190

ABSTRACT

The development and utilization of molecular-markers play an important role in genomics-assisted breeding during pyramiding of valuable genes. The aim of present study was to develop and validate a novel core-set of KASP (Kompetitive Allele-Specific PCR) markers associated with traits improving rice grain yield and adaptability under direct-seeded cultivation conditions. The 110 phenotypically validated KASP assays out of 171 designed KASP, include assays for biotic-resistance genes, anaerobic germination, root-traits, grain yield, lodging resistance and early-uniform emergence. The KASP assays were validated for their robustness and reliability at five different levels using diverse germplasm, segregating and advanced population, comparison with SSR markers and on F1s. The present research work will provide (i) breeding material in form of anticipated pre-direct-seeded adapted rice varieties (ii) single improved breeding line with many useful genes and (iii) KASP assay information for the useful QTL/genes providing grain yield and adaptability to rice under direct-seeded cultivation conditions.


Subject(s)
Oryza , Edible Grain/genetics , Oryza/genetics , Phenotype , Plant Breeding , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...