Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Neurochem Int ; 63(6): 626-34, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24044898

ABSTRACT

Spontaneous protein deamidation of labile asparagines (Asn), generating abnormal l-isoaspartyl residues (IsoAsp), is associated with cell aging and enhanced by an oxidative microenvironment. The presence of isopeptide bonds impairs protein structure/function. To minimize the damage, IsoAsp can be "repaired" by the protein l-isoaspartyl/d-aspartyl O-methyltransferase (PIMT) and S-adenosylmethionine (AdoMet) is the methyl donor of this reaction. PIMT is a repair enzyme that initiates the conversion of l-isoAsp (or d-Asp) residues to l-Asp residues. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease principally affecting motor neurons. The condition of oxidative stress reported in familial and sporadic forms of ALS prompted us to investigate Asn deamidation in ALS tissue. Erythrocytes (RBCs) were selected as a model system since they are unable to replace damaged proteins and protein methylesterification is virtually the only AdoMet-consuming reaction operating in these cells. Our data show that, in vitro assay, abnormal IsoAsp residues were significantly higher in ALS patients erythrocyte membrane proteins with an increased methyl accepting capability relative to controls (p<0.05). Moreover, we observed a reduction in AdoMet levels, while AdoHcy concentration was comparable to that detected in the control, resulting in a lower [AdoMet]/[AdoHcy] ratio. Then, the accumulation of altered aspartyl residues in ALS patients is probably related to a reduced efficiency of the S-adenosylmethionine (AdoMet)-dependent repair system causing increased protein instability at Asn sites. The increase of abnormal residues represents a new protein alteration that may be present not only in red blood cells but also in other cell types of patients suffering from ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Aspartic Acid/metabolism , Erythrocyte Membrane/metabolism , Membrane Proteins/metabolism , Adult , Aged , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/complications , Female , Humans , Male , Methionine/metabolism , Methionine Adenosyltransferase/metabolism , Middle Aged , Oxidation-Reduction , Oxidative Stress/drug effects , Protein D-Aspartate-L-Isoaspartate Methyltransferase/metabolism , Reactive Oxygen Species/metabolism , S-Adenosylhomocysteine
2.
PLoS One ; 3(9): e3258, 2008 Sep 22.
Article in English | MEDLINE | ID: mdl-18806875

ABSTRACT

BACKGROUND: Natural proteins undergo in vivo spontaneous post-biosynthetic deamidation of specific asparagine residues with isoaspartyl formation. Deamidated-isomerized molecules are both structurally and functionally altered. The enzyme isoaspartyl protein carboxyl-O-methyltransferase (PCMT; EC 2.1.1.77) has peculiar substrate specificity towards these deamidated proteins. It catalyzes methyl esterification of the free alpha-carboxyl group at the isoaspartyl site, thus initiating the repair of these abnormal proteins through the conversion of the isopeptide bond into a normal alpha-peptide bond. Deamidation occurs slowly during cellular and molecular aging, being accelerated by physical-chemical stresses brought to the living cells. Previous evidence supports a role of protein deamidation in the acquisition of susceptibility to apoptosis. Aim of this work was to shed a light on the role of PCMT in apoptosis clarifying the relevant mechanism(s). METHODOLOGY/PRINCIPAL FINDINGS: Endothelial cells transiently transfected with various constructs of PCMT, i.e. overexpressing wild type PCMT or negative dominants, were used to investigate the role of protein methylation during apoptosis induced by oxidative stress (H(2)O(2); 0.1-0.5 mM range). Results show that A) Cells overexpressing "wild type" human PCMT were resistant to apoptosis, whereas overexpression of antisense PCMT induces high sensitivity to apoptosis even at low H(2)O(2) concentrations. B) PCMT protective effect is specifically due to its methyltransferase activity rather than to any other non-enzymatic interactions. In fact negative dominants, overexpressing PCMT mutants devoid of catalytic activity do not prevent apoptosis. C) Cells transfected with antisense PCMT, or overexpressing a PCMT mutant, accumulate isoaspartyl-containing damaged proteins upon H(2)O(2) treatment. Proteomics allowed the identification of proteins, which are both PCMT substrates and apoptosis effectors, whose deamidation occurs under oxidative stress conditions leading to programmed cell death. These proteins, including Hsp70, Hsp90, actin, and Bcl-xL, are recognized and methylated by PCMT, according to the general repair mechanism of this methyltransferase. CONCLUSION/SIGNIFICANCE: Apoptosis can be modulated by "on/off" switch partitioning the amount of specific protein effectors, which are either in their active (native) or inactive (deamidated) molecular forms. Deamidated proteins can also be functionally restored through methylation. Bcl-xL provides a case for the role of PCMT in the maintenance of functional stability of this antiapoptotic protein.


Subject(s)
Apoptosis , Endothelial Cells/metabolism , Isoaspartic Acid/chemistry , Oxidative Stress , Protein Methyltransferases/metabolism , bcl-X Protein/metabolism , Animals , Aorta/cytology , DNA Methylation , Endothelial Cells/cytology , Escherichia coli/metabolism , Humans , Hydrogen Peroxide/pharmacology , Models, Biological , Proteomics/methods , Swine
3.
J Agric Food Chem ; 55(24): 9977-85, 2007 Nov 28.
Article in English | MEDLINE | ID: mdl-17960886

ABSTRACT

Apple is among the most consumed fruits worldwide, and several studies suggest that apple polyphenols could play a role in the prevention of degenerative diseases. 'Annurca' apple fruit undergoes, after harvest, a typical reddening treatment to turn the apples' skin red, and it is noted for its high firmness. This paper reports the effect of reddening-ripening treatment on polyphenol concentration and antioxidant activity of both peel and flesh extracts. The in vitro antioxidant properties have been compared with the protective effect against the cytotoxic effects of reactive oxygen species using Caco-2 cells as model system. Pretreatment of cells with different polyphenolic apple extracts provides a remarkable protection against oxidative damage. This effect seems to be associated with the antioxidant activity of 'Annurca' apple polyphenolic compounds. The flesh has antioxidant properties comparable to those possessed by the peel. Neither the reddening nor the fruit conservation causes changes in the antioxidant properties possessed by this apple variety. The data indicate that polyphenolic compounds in 'Annurca' apples are relatively stable in the peel and also in the flesh; therefore, the health benefits of polyphenols should be maintained during long-term storage. Finally, a diet rich in apple antioxidants could exert a beneficial effect in the prevention of intestinal pathologies related to the production of reactive oxygen species.


Subject(s)
Antioxidants/analysis , Flavonoids/analysis , Fruit/chemistry , Malus/chemistry , Phenols/analysis , Plant Extracts/analysis , Antioxidants/metabolism , Caco-2 Cells , Flavonoids/metabolism , Humans , Malus/metabolism , Malus/physiology , Oxidation-Reduction , Oxidative Stress/drug effects , Phenols/metabolism , Plant Extracts/metabolism , Polyphenols , Reactive Oxygen Species/metabolism , Time Factors
4.
FEBS J ; 274(20): 5263-77, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17892495

ABSTRACT

Spontaneous protein deamidation of labile Asn residues, generating L-isoaspartates and D-aspartates, is associated with cell aging and is enhanced by an oxidative microenvironment; to minimize the damage, the isoaspartate residues can be 'repaired' by a specific L-isoaspartate (D-aspartate) protein O-methyltransferase (PIMT). As both premature aging and chronic oxidative stress are typical features of Down's syndrome (DS), we tested the hypothesis that deamidated proteins may build up in trisomic patients. Blood samples were obtained from children with karyotypically confirmed full trisomy 21 and from age-matched healthy controls. Using recombinant PIMT as a probe, we demonstrated a dramatic rise of L-isoaspartates in erythrocyte membrane proteins from DS patients. The content of D-aspartate was also significantly increased. The integrity of the repair system was checked by evaluating methionine transport, PIMT specific activity, and intracellular concentrations of adenosylmethionine and adenosylhomocysteine. The overall methylation pathway was directly monitored by incubating fresh red blood cells with methyl-labeled methionine; a three-fold increase of protein methyl esters was detected in trisomic children. Deamidated species include ankyrin, band 4.1, band 4.2 and the integral membrane protein band 3; ankyrin and band 4.1 were significantly hypermethylated in DS. When DS red blood cells were subjected to oxidative treatment in vitro, the increase of protein deamidation paralleled lipid peroxidation and free radical generation. We observed a similar pattern in Epstein-Barr virus B-lymphocytes from trisomic patients. In conclusion, our findings support the hypothesis that protein instability at asparagine sites is a biochemical feature of DS, presumably depending upon the oxidative microenvironment. The possible pathophysiological implications are discussed.


Subject(s)
Down Syndrome/blood , Erythrocyte Membrane/metabolism , Isoaspartic Acid/metabolism , Membrane Proteins/metabolism , Case-Control Studies , Child , Down Syndrome/pathology , Erythrocyte Aging , Herpesvirus 4, Human/physiology , Humans , Lymphocytes/cytology , Lymphocytes/metabolism , Lymphocytes/virology , Methemoglobin/metabolism , Methionine/metabolism , Methylation , Oxidative Stress , Protein D-Aspartate-L-Isoaspartate Methyltransferase/metabolism , Recombinant Proteins/metabolism , S-Adenosylhomocysteine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL