Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Int J Genomics ; 2017: 5214806, 2017.
Article in English | MEDLINE | ID: mdl-29085832

ABSTRACT

miR-28-5p is an intragenic miRNA which is underexpressed in several tumor types showing a tumor suppressor (TS) activity. Routinely, the known miR-28-5p targets are validated in specific tumor contexts but it is unclear whether these targets are also being regulated in other tumor types. To this end, we adopted the miRNA pull out assay to capture the miR-28-5p targets in DU-145 prostate cancer (PCa) cells. Firstly, we demonstrated that miR-28-5p acts as a TS-miRNA in PCa, affecting cell proliferation, survival, and apoptosis. Secondly, we evaluated the enrichment of the 10 validated miR-28-5p targets in the pull out sample. We showed that E2F6, TEX-261, MAPK1, MPL, N4BP1, and RAP1B but not BAG1, OTUB1, MAD2L1, and p21 were significantly enriched, suggesting that not all the miR-28-5p targets are regulated by this miRNA in PCa. We then verified whether the miR-28-5p-interacting targets were regulated by this miRNA. We selected E2F6, the most enriched target in the pull out sample, and demonstrated that miR-28-5p downregulated E2F6 at the protein level suggesting that our approach was effective. In general terms, these findings support the miRNA pull out assay as a useful method to identify context-specific miRNA targets.

2.
J Cancer ; 8(14): 2729-2739, 2017.
Article in English | MEDLINE | ID: mdl-28928862

ABSTRACT

Purpose. miR-26a-5p is a tumor suppressor (TS) miRNA often downregulated in several tumor tissues and tumor cell lines. In this work, we performed the re-expression of the miR-26a-5p in DU-145 prostate cancer cells to collect genes interacting with miR-26a-5p and analyzed their integration in the tumorigenesis related pathways. Methods. The transfection of DU-145 prostate cancer cells with miR-26a-5p was done using nucleofection. The biological effects induced by miR-26a-5p re-expression were detected with routine assays for cell proliferation, cell cycle, survival, apoptosis and cell migration. The miRNA pull out technique was used to collect and next generation sequencing to identify the complete repertoire of the miR-26a-5p targets (miR-26a-5p/targetome). TargetScan 7, PITA and RNA22 were used to find the predicted miR-26a-5p targets in the miR-26a-5p/targetome. Gene set enrichment analysis were used to integrate target genes in KEGG pathways and Protein-Protein Interaction networks (PPINs) and modules were built. Results. miR-26a-5p exerted an anti-proliferative effect acting at several levels, by decreasing survival and migration and inducing both cell cycle block and apoptosis. The analysis of the miR-26a-5p/targetome showed that 1423 (1352 coding and 71 non-coding) transcripts interacted with miR-26a-5p. Filtering the miR-26a-5p/targetome with prediction algorithms, 628 out of 1353 transcripts were miR-26a-5p predicted targets and 73 of them were already validated miR-26a-5p targets. Finally, miR-26a-5p targets were involved in 22 KEGG pathways and 20 significant protein-protein interaction modules Conclusion. The TS-miR-26a-5p/targetome is a platform that shows both unknown and known miRNA/target interactions thus offering the possibility to validate genes and discover pathways in which these genes could be involved.

3.
Article in English | MEDLINE | ID: mdl-27471727

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that play an important role in the post-transcriptional regulation of gene expression. miRNAs are involved in the regulation of many biological processes such as differentiation, apoptosis, and cell proliferation. miRNAs are expressed in embryonic, postnatal, and adult hearts, and they have a key role in the regulation of gene expression during cardiovascular development and disease. Aberrant expression of miRNAs is associated with abnormal cardiac cell differentiation and dysfunction. Tbx5 is a member of the T-box gene family, which acts as transcription factor involved in the vertebrate heart development. Alteration of Tbx5 level affects the expression of hundreds of genes. Haploinsufficiency and gene duplication of Tbx5 are at the basis of the cardiac abnormalities associated with Holt-Oram syndrome (HOS). Recent data indicate that miRNAs might be an important part of the regulatory circuit through which Tbx5 controls heart development. Using high-throughput technologies, we characterized genome-widely the miRNA and mRNA expression profiles in WT- and Tbx5-depleted zebrafish embryos at two crucial developmental time points, 24 and 48 h post fertilization (hpf). We found that several miRNAs, which are potential effectors of Tbx5, are differentially expressed; some of them are already known to be involved in cardiac development and functions, such as miR-30, miR-34, miR-190, and miR-21. We performed an integrated analysis of miRNA expression data with gene expression profiles to refine computational target prediction approaches by means of the inversely correlation of miRNA-mRNA expressions, and we highlighted targets, which have roles in cardiac contractility, cardiomyocyte proliferation/apoptosis, and morphogenesis, crucial functions regulated by Tbx5. This approach allowed to discover complex regulatory circuits involving novel miRNAs and protein coding genes not considered before in the HOS such as miR-34a and miR-30 and their targets.

4.
PLoS One ; 10(4): e0122473, 2015.
Article in English | MEDLINE | ID: mdl-25848944

ABSTRACT

Genes and their expression regulation are among the key factors in the comprehension of the genesis and development of complex diseases. In this context, microRNAs (miRNAs) are post-transcriptional regulators that play an important role in gene expression since they are frequently deregulated in pathologies like cardiovascular disease and cancer. In vitro validation of miRNA--targets regulation is often too expensive and time consuming to be carried out for every possible alternative. As a result, a tool able to provide some criteria to prioritize trials is becoming a pressing need. Moreover, before planning in vitro experiments, the scientist needs to evaluate the miRNA-target genes interaction network. In this paper we describe the miRable method whose purpose is to identify new potentially relevant genes and their interaction networks associate to a specific pathology. To achieve this goal miRable follows a system biology approach integrating together general-purpose medical knowledge (literature, Protein-Protein Interaction networks, prediction tools) and pathology specific data (gene expression data). A case study on Prostate Cancer has shown that miRable is able to: 1) find new potential miRNA-targets pairs, 2) highlight novel genes potentially involved in a disease but never or little studied before, 3) reconstruct all possible regulatory subnetworks starting from the literature to expand the knowledge on the regulation of miRNA regulatory mechanisms.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks/genetics , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Gene Expression Profiling , Humans , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Genet Epigenet ; 7: 33-41, 2015.
Article in English | MEDLINE | ID: mdl-26740745

ABSTRACT

In this study, we report that immortal mouse embryonic fibroblasts (I-MEFs) have a baseline level of cells positive for alkaline phosphatase (AP(+)) staining. Environmental stresses, including long-lasting growth in the absence of expansion and treatment with drugs, enhance the frequency of AP(+) I-MEFs. By adapting fast red AP staining to the sorting procedure, we separated AP(+) and AP(-) I-MEFs and demonstrated that the differentially expressed genes are consistent with a reprogrammed phenotype. In particular, we found that sestrin 1 is upregulated in AP(+) I-MEFs. We focused on this gene and demonstrated that increased sestrin 1 expression is accompanied by the growth of I-MEFs in the absence of expansion and occurs before the formation of AP(+) I-MEFs. Together with sestrin 1 upregulation, we found that AP(+) I-MEFs accumulated in the G1 phase of the cell cycle, suggesting that the two events are causally related. Accordingly, we found that silencing sestrin 1 expression reduced the frequency and G1 accumulation of AP(+) I-MEFs. Taken together, our data suggested that I-MEFs stressed by environmental changes acquire the AP(+) phenotype and achieve a quiescent state characterized by a new transcriptional network.

6.
Cytotechnology ; 67(6): 969-75, 2015 Dec.
Article in English | MEDLINE | ID: mdl-24947063

ABSTRACT

The zebrafish/tumor xenograft angiogenesis assay is used to approach tumor angiogenesis, a pivotal step in cancer progression and target for anti-tumor therapies. Here, we evaluated whether the assay could allow the identification of microRNAs having an anti-angiogenic potential. For that, we transfected DU-145 prostate cancer cells with four microRNAs (miR-125a, miR-320, miR-487b, miR-492) responsive to both anti- and pro-angiogenic stimuli applied to human umbilical vein endothelial cells. After transfection, DU-145 cells were injected close to the developing subintestinal vessels of transgenic Tg(Kdrl:eGFP)s843 zebrafish embryos that express green fluorescent protein under the control of Kdrl promoter. At 72 h post-fertilization, we observed that green fluorescent protein-positive neo-vessels infiltrated the graft of DU-145 transfected with miR-125a, miR-320, and miR-487b. Vice versa, neo-vessel formation and tumor cell infiltration were inhibited when DU-145 cells transfected with miR-492 were used. These results indicated that the zebrafish/tumor xenograft assay was adequate to identify microRNAs able to suppress the release of angiogenic growth factors by angiogenic tumor cells.

7.
BMC Genomics ; 15 Suppl 3: S4, 2014.
Article in English | MEDLINE | ID: mdl-25077952

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in the regulation of various biological processes through their interaction with cellular mRNAs. A significant amount of miRNAs has been found in extracellular human body fluids (e.g. plasma and serum) and some circulating miRNAs in the blood have been successfully revealed as biomarkers for diseases including cardiovascular diseases and cancer. Released miRNAs do not necessarily reflect the abundance of miRNAs in the cell of origin. It is claimed that release of miRNAs from cells into blood and ductal fluids is selective and that the selection of released miRNAs may correlate with malignancy. Moreover, miRNAs play a significant role in pharmacogenomics by down-regulating genes that are important for drug function. In particular, the use of drugs should be taken into consideration while analyzing plasma miRNA levels as drug treatment. This may impair their employment as biomarkers. DESCRIPTION: We enriched our manually curated extracellular/circulating microRNAs database, miRandola, by providing (i) a systematic comparison of expression profiles of cellular and extracellular miRNAs, (ii) a miRNA targets enrichment analysis procedure, (iii) information on drugs and their effect on miRNA expression, obtained by applying a natural language processing algorithm to abstracts obtained from PubMed. CONCLUSIONS: This allows users to improve the knowledge about the function, diagnostic potential, and the drug effects on cellular and circulating miRNAs.


Subject(s)
Computational Biology/methods , Genomics/methods , MicroRNAs/genetics , Biological Specimen Banks , Database Management Systems , Databases, Genetic , Humans , Information Storage and Retrieval , MicroRNAs/metabolism , User-Computer Interface , Web Browser
8.
Mol Cancer ; 12(1): 52, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23734815

ABSTRACT

BACKGROUND: Circulating microRNAs (miRNAs) have been found in many body fluids and represent reliable markers of several physio-pathological disorders, including cancer. In some cases, circulating miRNAs have been evaluated as markers of the efficacy of anticancer treatment but it is not yet clear if miRNAs are actively released by tumor cells or derive from dead tumor cells. RESULTS: We showed that a set of prostate cancer secretory miRNAs (PCS-miRNAs) were spontaneously released in the growth medium by DU-145 prostate cancer cells and that the release was greater after treatment with the cytotoxic drug fludarabine. We also found that the miRNAs were associated with exosomes, implying an active mechanism of miRNA release. It should be noted that in fludarabine treated cells the release of miR-485-3p, as well as its association with exosomes, was reduced suggesting that miR-485-3p was retained by surviving cells. Monitoring the intracellular level of miR-485-3p in these cells, we found that miR-485-3p was stably up regulated for several days after treatment. As a possible mechanism we suggest that fludarabine selected cells that harbor high levels of miR-485-3p, which in turn regulates the transcriptional repressor nuclear factor-Y triggering the transcription of topoisomerase IIα, multidrug resistance gene 1 and cyclin B2 pro-survival genes. CONCLUSIONS: Cytotoxic treatment of DU-145 cells enhanced the release of PCS-miRNAs with the exception of miR-485-3p which was retained by surviving cells. We speculate that the retention of miR-485-3p was a side effect of fludarabine treatment in that the high intracellular level of miR-485-3p plays a role in the sensitivity to fludarabine.


Subject(s)
Antineoplastic Agents/pharmacology , MicroRNAs/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Vidarabine/analogs & derivatives , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival , Humans , Male , Prostatic Neoplasms/metabolism , Vidarabine/pharmacology
9.
J Cell Mol Med ; 17(8): 1006-15, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23802567

ABSTRACT

Endothelial cells growing in high glucose-containing medium show reduced cell proliferation and in vitro angiogenesis. Evidence suggests that the molecular pathways leading to these cellular responses are controlled by microRNAs, endogenous post-transcriptional regulators of gene expression. To identify the microRNAs and their targeted genes involved in the glucose responses, we performed the miRNA signature of Human Umbelical Vein Endothelial Cells (HUVECs) exposed and unexposed to high glucose. Among differentially expressed microRNAs, we analysed miR-492 and showed that its overexpression was able to reduce proliferation, migration and tube formation of HUVEC. These effects were accompanied by the down-regulation of eNOS, a key regulator of the endothelial cell function. We showed that eNOS was indirectly down-regulated by miR-492 and we discovered that miR-492 was able to bind mRNAs involved in proliferation, migration, tube formation and regulation of eNOS activity and expression. Moreover, we found that miR-492 decreased VEGF expression in HUVEC and impaired in vivo angiogenesis in a tumour xenograft model, suggesting a role also in modulating the secretion of pro-angiogenic factors. Taken together, the data indicate that miR-492 exerts a potent anti-angiogenic activity in endothelial cells and therefore miR-492 seems a promising tool for anti-angiogenic therapy.


Subject(s)
Endothelial Cells/metabolism , MicroRNAs/metabolism , Neovascularization, Pathologic/genetics , 3' Untranslated Regions/genetics , 3-Phosphoinositide-Dependent Protein Kinases/metabolism , Enzyme Assays , Gene Expression Regulation , HCT116 Cells , Human Umbilical Vein Endothelial Cells , Humans , Luciferases/metabolism , MicroRNAs/genetics , Neovascularization, Pathologic/pathology , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Protein Binding/genetics , Sp1 Transcription Factor/metabolism , Transfection
10.
Nucleic Acid Ther ; 22(4): 283-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22830357

ABSTRACT

MicroRNAs (miRNAs) might behave as tumor suppressors and for that they are under consideration as novel therapeutic drugs. We tested the tumor suppressor activity of miRNA-34a (miR-34a) by measuring cell proliferation of the follicular lymphoma cell line DoHH2 transfected with this miRNA. We report that miR-34a did not inhibit cell proliferation notwithstanding a marked down-regulation of c-MYC. Interestingly, DoHH2 transfected cells showed a significant p53 down-regulation, suggesting that c-MYC positively controls p53 and the failed inhibition of cell proliferation is probably due to the down-regulation of the c-MYC/p53 axis. In keeping with this, c-MYC silencing also down-regulated p53 and had no effect on cell proliferation. In accordance with this hypothesis, etoposide or nutlin-3 treatment or a small interfering RNA (siRNA) against BCL6 (B-cell lymphoma 6) inhibited the proliferation of DoHH2 cells by up-regulating p53 without affecting either miR-34a or c-MYC levels. These results indicate that the proliferation is controlled by the regulatory axis c-MYC/p53 and suggest that paradoxically miR-34a behaves as a pro-proliferative rather than an anti-proliferative miRNA in DoHH2 cells.


Subject(s)
Cell Proliferation , Down-Regulation , MicroRNAs/genetics , Proto-Oncogene Proteins c-myc/genetics , RNA Interference , Tumor Suppressor Protein p53/metabolism , 3' Untranslated Regions , Antineoplastic Agents, Phytogenic/pharmacology , Base Sequence , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Etoposide/pharmacology , Gene Expression , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Humans , Imidazoles/pharmacology , Lymphoma , MicroRNAs/metabolism , Piperazines/pharmacology , Proto-Oncogene Proteins c-bcl-6 , Proto-Oncogene Proteins c-myc/metabolism , Transfection , Tumor Suppressor Protein p53/genetics
11.
Cell Mol Life Sci ; 69(7): 1049-65, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21842412

ABSTRACT

MicroRNAs are short endogenous RNA molecules that are able to regulate (mainly inhibiting) gene expression at the post-transcriptional level. The MicroRNA expression profile is cell-specific, but it is sensitive to perturbations produced by stresses and diseases. Endothelial cells subjected to metabolic stresses, such as calorie restriction, nutrients excess (glucose, cholesterol, lipids) and hypoxia may alter their functionality. This is predictive for the development of pathologies like atherosclerosis, diabetes, and hypertension. Moreover, cancer cells can activate a resting endothelium by secreting pro-angiogenic factors, in order to promote neoangiogenesis, which is essential for tumor growth. Endothelial altered phenotype is mirrored by altered mRNA, microRNA, and protein expression, with a microRNA being able to control pathways by regulating the expression of multiple mRNAs. In this review we will consider the involvement of microRNAs in modulating the response of endothelial cells to metabolic stresses and their role in promoting or halting angiogenesis.


Subject(s)
MicroRNAs/genetics , Neovascularization, Pathologic , Stress, Physiological , Animals , Cell Communication , Gene Expression Regulation , Humans , MicroRNAs/metabolism
12.
Physiol Genomics ; 43(20): 1153-9, 2011 Oct 20.
Article in English | MEDLINE | ID: mdl-21846807

ABSTRACT

The prosenescence role of miR-290 and nocodazole has been documented in primary mouse embryo fibroblasts (MEF), while it is not clear whether immortal murine fibroblasts are still responsive to these senescence inducing stimuli. To establish this point, immortal murine fibroblasts with functional (NIH3T3) or nonfunctional p53 (I-MEF) and low levels of miR-290 were tested for their capability to undergo senescence after exposure to either nocodazole or miR-290. Our results clearly indicate that nocodazole induces senescence only in NIH3T3 cells with a functional p53 but not in I-MEF lacking a functional p53. miR-290 overexpression is unable to address any of the tested immortalized clones toward senescence, regardless of the p53 status, suggesting that the prosenescence role of miR-290 is specific for primary but not for immortal murine fibroblasts. Moreover our findings suggest that the mere downregulation of a potential tumor suppressor miRNA in a given cell type does not necessarily imply that it behaves as a tumor suppressor.


Subject(s)
Cellular Senescence/genetics , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , MicroRNAs/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Cell Line, Transformed , Cellular Senescence/drug effects , Clone Cells , Fibroblasts/drug effects , Mice , NIH 3T3 Cells , Nocodazole/pharmacology , Transfection
13.
Aging (Albany NY) ; 3(7): 665-71, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21765199

ABSTRACT

The life span (Hayflick limit) of primary mouse embryo fibroblasts (MEF) in culture is variable but it is still unclear if the escape of the Hayflick limit is also variable. To address this point MEF were expanded every fifteen days (6T15) instead of every three days (6T3) until they became immortal. With this protocol MEF lifespan was extended and immortalization accordingly delayed. By testing a panel of genes (p19ARF, p16, p21) and miRNAs (miR-20a, miR-21, miR-28, miR-290) related to primary MEF senescence, a switch of p21 from up to down regulation, the down regulation of specific miRNAs as well as a massive shift from diploidy to hyperdiploidy were observed in coincidence with the resumption of cell proliferation. Collectively, these data indicate that the inactivation of genes and miRNAs, important in controlling cell proliferation, might be determinant for the escape from the Hayflick limit. In support of this hypothesis was the finding that some of the down regulated miRNAs transfected in immortalized MEF inhibited cell proliferation thus displaying a tumor suppressor-like activity.


Subject(s)
Cellular Senescence/physiology , Fibroblasts/physiology , Genes, Tumor Suppressor , MicroRNAs/metabolism , Animals , Cell Proliferation , Cells, Cultured , Fibroblasts/cytology , Gene Expression Regulation , Mice , MicroRNAs/genetics
14.
Oligonucleotides ; 21(1): 39-45, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21241187

ABSTRACT

Recently, it has been reported that, in several tumor cell lines, short double-stranded RNAs tailored for promoter regions of specific genes are able to activate their transcription. Such molecules (named RNA activators) act opposite to other double-stranded RNA molecules (named RNA inhibitors) in that the overexpression instead of underexpression of a given gene is triggered. In Dohh2 non-Hodgkin lymphoma cells, the transcriptional repressor BCL6, which negatively controls both p53 and p21, is overexpressed, so that the cells can escape the check point governed by p53 and proliferate. The aim of this work was to investigate whether the RNA activator p21 can represent a tool to circumvent the transcriptional control of BCL6 and induce the blockage of cell proliferation in Dohh2 non-Hodgkin lymphoma cells. For that, Dohh2 cells were transfected with either a control RNA activator (ds-NC) or an RNA activator specific for human p21 promoter (ds-p21). At various time points after transfection, the cells were collected and p21 was measured. Dohh2 cells transfected with ds-p21 showed a slight but significant overexpression of p21 at both mRNA and protein levels. Nonetheless, cell proliferation, cell cycle, and apoptosis were not significantly modified. In contrast, the exposure of Dohh2 cells transfected with ds-p21 to fludarabine potentiates the cytotoxicity of the drug, suggesting the RNA activator p21 complements the fludarabine-dependent cell death pathways.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21 , DNA-Binding Proteins/metabolism , RNA, Double-Stranded , Tumor Suppressor Protein p53/metabolism , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA-Binding Proteins/genetics , Drug Delivery Systems , Drug Synergism , Female , Gene Expression Regulation , Humans , Lymphoma, Non-Hodgkin/drug therapy , Lymphoma, Non-Hodgkin/genetics , Lymphoma, Non-Hodgkin/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins c-bcl-6 , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Messenger/analysis , Transcriptional Activation , Transfection , Tumor Suppressor Protein p53/genetics , Vidarabine/analogs & derivatives , Vidarabine/pharmacology , Vidarabine/therapeutic use
15.
J Cell Mol Med ; 14(11): 2633-40, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21114763

ABSTRACT

Expression of microRNAs changes markedly in tumours and evidence indicates that they are causatively related to tumourigenesis, behaving as tumour suppressor microRNAs or onco microRNAs; in some cases they can behave as both depending on the type of cancer. Some tumour suppressor microRNAs appear to be an integral part of the p53 and Retinoblastoma (RB) network, the main regulatory pathways controlling senescence, a major tumour suppressor mechanism. The INK4a/ARF locus which codifies for two proteins, p19ARF and p16INK4a, plays a central role in senescence by controlling both p53 and RB. Recent evidence shows that the proto-oncogene leukaemia/lymphoma related factor, a p19ARF specific repressor, is controlled by miRNAs and that miRNAs, in particular miR-20a and miR-290, are causatively involved in mouse embryo fibroblasts (MEF) senescence in culture. Intriguingly, both miR-20a, member of the oncogenic miR-17-92 cluster, and miR-290, belonging to the miR-290-295 cluster, are highly expressed in embryonic stem (ES) cells. The pro-senescence role of miR-20a and miR-290 in MEF is apparently in contrast with their proliferative role in tumour and ES cells. We propose that miRNAs may exert opposing functions depending on the miRNAs repertoire as well as target/s level/s present in different cellular contexts, suggesting the importance of evaluating miRNAs activity in diverse genetic settings before their therapeutic use as tumour suppressors.


Subject(s)
Cellular Senescence , MicroRNAs/physiology , Neoplasms/genetics , Neoplasms/pathology , Animals , Humans , Mice , Proto-Oncogene Mas
16.
J Biol Chem ; 285(50): 39551-63, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-20923760

ABSTRACT

Leukemia/lymphoma-related factor (LRF) is a transcriptional repressor, which by recruiting histone deacetylases specifically represses p19/ARF expression, thus behaving as an oncogene. Conversely, in mouse embryonic fibroblasts (MEF), LRF inhibition causes aberrant p19ARF up-regulation resulting in proliferative defects and premature senescence. We have recently shown that LRF is controlled by microRNAs. Here we show that LRF acts on MEF proliferation and senescence/apoptosis by repressing miR-28 and miR-505, revealing a regulatory circuit where microRNAs (miRNAs) work both upstream and downstream of LRF. By analyzing miRNA expression profiles of MEF transfected with LRF-specific short interfering RNAs, we found that miR-28 and miR-505 are modulated by LRF. Both miRNAs are predicted to target alternative splicing factor/splicing factor 2 (ASF/SF2), a serine/arginine protein essential for cell viability. In vertebrates, loss or inactivation of ASF/SF2 may result in genomic instability and induce G(2) cell cycle arrest and apoptosis. We showed that miR-28 and miR-505 modulate ASF/SF2 by directly binding ASF/SF2 3'-UTR. Decrease in LRF causes a decrease in ASF/SF2, which depends on up-regulation of miR-28 and miR-505. Alteration of each of the members of the LRF/miR-28/miR-505/ASF/SF2 axis affects MEF proliferation and the number of senescent and apoptotic cells. Consistently, the axis is coordinately modulated as cell senescence increases with passages in MEF culture. In conclusion, we show that LRF-dependent miRNAs miR-28 and miR-505 control MEF proliferation and survival by targeting ASF/SF2 and suggest a central role of LRF-related miRNAs, in addition to the role of LRF-dependent p53 control, in cellular homeostasis.


Subject(s)
Alternative Splicing , Apoptosis , DNA-Binding Proteins/metabolism , Fibroblasts/cytology , Gene Expression Regulation , MicroRNAs/genetics , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , 3' Untranslated Regions , Animals , Cellular Senescence , HEK293 Cells , Humans , Mice , Oligonucleotide Array Sequence Analysis , Serine-Arginine Splicing Factors
17.
FEBS J ; 277(13): 2853-67, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20528917

ABSTRACT

Adenine nucleotide translocases (ANTs) are multitask proteins involved in several aspects of cell metabolism, as well as in the regulation of cell death/survival processes. We investigated the role played by ANT isoforms 1 and 2 in the growth of a human glioblastoma cell line (ADF cells). The silencing of ANT2 isoform, by small interfering RNA, did not produce significant changes in ADF cell viability. By contrast, the silencing of ANT1 isoform strongly reduced ADF cell viability by inducing a non-apoptotic cell death process resembling paraptosis. We demonstrated that cell death induced by ANT1 depletion cannot be ascribed to the loss of the ATP/ADP exchange function of this protein. By contrast, our findings indicate that ANT1-silenced cells experience oxidative stress, thus allowing us to hypothesize that the effect of ANT1-silencing on ADF is mediated by the loss of the ANT1 uncoupling function. Several studies ascribe a pro-apoptotic role to ANT1 as a result of the observation that ANT1 overexpression sensitizes cells to mitochondrial depolarization or to apoptotic stimuli. In the present study, we demonstrate that, despite its pro-apoptotic function at a high expression level, the reduction of ANT1 density below a physiological baseline impairs fundamental functions of this protein in ADF cells, leading them to undertake a cell death process.


Subject(s)
Adenine Nucleotide Translocator 1/genetics , Apoptosis , Gene Silencing , Glioblastoma/metabolism , Glioblastoma/pathology , Oxidative Stress , Adenine Nucleotide Translocator 1/metabolism , Glioblastoma/enzymology , Humans , Tumor Cells, Cultured
18.
Nucleic Acids Res ; 38(14): e149, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20519199

ABSTRACT

The introduction of exogenous DNA in human somatic cells results in a frequency of random integration at least 100-fold higher than gene targeting (GT), posing a seemingly insurmountable limitation for gene therapy applications. We previously reported that, in human cells, the stable over-expression of the Saccharomyces cerevisiae Rad52 gene (yRAD52), which plays the major role in yeast homologous recombination (HR), caused an up to 37-fold increase in the frequency of GT, indicating that yRAD52 interacts with the double-strand break repair pathway(s) of human cells favoring homologous integration. In the present study, we tested the effect of the yRad52 protein by delivering it directly to the human cells. To this purpose, we fused the yRAD52 cDNA to the arginine-rich domain of the TAT protein of HIV (tat11) that is known to permeate the cell membranes. We observed that a recombinant yRad52tat11 fusion protein produced in Escherichia coli, which maintains its ability to bind single-stranded DNA (ssDNA), enters the cells and the nuclei, where it is able to increase both intrachromosomal recombination and GT up to 63- and 50-fold, respectively. Moreover, the non-homologous plasmid DNA integration decreased by 4-fold. yRAD52tat11 proteins carrying point mutations in the ssDNA binding domain caused a lower or nil increase in recombination proficiency. Thus, the yRad52tat11 could be instrumental to increase GT in human cells and a 'protein delivery approach' offers a new tool for developing novel strategies for genome modification and gene therapy applications.


Subject(s)
Cell Nucleus/metabolism , Gene Targeting/methods , Rad52 DNA Repair and Recombination Protein/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Active Transport, Cell Nucleus , DNA, Single-Stranded/metabolism , HeLa Cells , Humans , Mutation , Rad52 DNA Repair and Recombination Protein/genetics , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/biosynthesis , Recombination, Genetic , Saccharomyces cerevisiae Proteins/genetics , tat Gene Products, Human Immunodeficiency Virus/genetics
19.
J Cell Sci ; 123(Pt 5): 690-8, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20124416

ABSTRACT

Retinoblastoma-associated proteins 46 and 48 (RbAp46 and RbAp48) are factors that are components of different chromatin-modelling complexes, such as polycomb repressive complex 2, the activity of which is related to epigenetic gene regulation in stem cells. To date, no direct findings are available on the in vivo role of RbAp48 in stem-cell biology. We recently identified DjRbAp48 - a planarian (Dugesia japonica) homologue of human RBAP48 - expression of which is restricted to the neoblasts, the adult stem cells of planarians. In vivo silencing of DjRbAp48 induces lethality and inability to regenerate, even though neoblasts proliferate and accumulate after wounding. Despite a partial reduction in neoblast number, we were always able to detect a significant number of these cells in DjRbAp48 RNAi animals. Parallel to the decrease in neoblasts, a reduction in the number of differentiated cells and the presence of apoptotic-like neoblasts were detectable in RNAi animals. These findings suggest that DjRbAp48 is not involved in neoblast maintenance, but rather in the regulation of differentiation of stem-cell progeny. We discuss our data, taking into account the possibility that DjRbAp48 might control the expression of genes necessary for cell differentiation by influencing chromatin architecture.


Subject(s)
Helminth Proteins/metabolism , Planarians/cytology , Planarians/metabolism , Retinoblastoma-Binding Protein 4/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , Cell Differentiation/genetics , Cell Differentiation/physiology , Chromatin/genetics , Chromatin/metabolism , Chromatin/ultrastructure , Flow Cytometry , Helminth Proteins/genetics , Humans , Immunohistochemistry , In Situ Hybridization , Microscopy, Electron, Transmission , Planarians/genetics , Planarians/ultrastructure , RNA Interference , Retinoblastoma-Binding Protein 4/genetics , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/ultrastructure
20.
Hum Mutat ; 31(4): 456-65, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20127977

ABSTRACT

The transcription of the DeltaN133p53 isoform of the TP53 gene is controlled by an internal promoter region (IPR) containing eight polymorphisms in 11 common haplotypes, following a resequencing of 47 Caucasians. We assayed the functional effects of the commonest six haplotypes on the promoter activity with a luciferase reporter system, in HeLa and 293T cells. These studies showed that different IPR haplotypes are associated with differences in the promoter activity resulting in marked variation in the baseline expression of DeltaN133p53. In vivo quantitative-polymerase chain reaction (PCR) on human tissues confirmed that the baseline levels of DeltaN133p53 showed haplotype specific differences that paralleled those seen in vitro. When cell lines were treated with camptothecin, the fold-increase in DeltaN133p53 levels was dose-dependent but haplotype-independent (i.e., similar for all the haplotypes). Finally, we used an electrophoretic mobility shift assay to analyze the rs1794287 polymorphism and found changes in the pattern of protein binding. This partially confirmed our in silico analysis showing that the polymorphism rs1794287 can affect the function of the internal promoter by changing its affinity for several transcription factors. Thus, we showed that the expression of DeltaN133p53 is under genetic control, and suggested the presence of interindividual differences underlying this mechanism.


Subject(s)
Haplotypes/genetics , Mutant Proteins/metabolism , Promoter Regions, Genetic , Tumor Suppressor Protein p53/genetics , Computational Biology , DNA/metabolism , Electrophoretic Mobility Shift Assay , HeLa Cells , Homozygote , Humans , Introns/genetics , Luciferases/metabolism , Polymerase Chain Reaction , Protein Binding , Protein Isoforms/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...