Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Peptides ; 178: 171244, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38788901

ABSTRACT

The neuropeptide relaxin-3 and its cognate receptor, relaxin family peptide-3 receptors (RXFP3), have been implicated in modulating learning and memory processes, but their specific roles remain unclear. This study utilized behavioral and molecular approaches to investigate the effects of putatively reversible blockade of RXFP3 in the ventral dentate gyrus (vDG) of the hippocampus on spatial and fear memory formation in rats. Male Wistar rats received bilateral vDG cannula implantation and injections of the RXFP3 antagonist, R3(BΔ23-27)R/I5 (400 ng/0.5 µL per side), or vehicle at specific time points before acquisition, consolidation, or retrieval phases of the Morris water maze and passive avoidance learning tasks. RXFP3 inhibition impaired acquisition in the passive avoidance task but not the spatial learning task. However, both memory consolidation and retrieval were disrupted in both tasks following RXFP3 antagonism. Ventral hippocampal levels of the consolidation-related kinase p70-S6 kinase (p70S6K) were reduced RXFP3 blockade. These findings highlight a key role for ventral hippocampal RXFP3 signaling in the acquisition, consolidation, and retrieval of spatial and emotional memories, extending previous work implicating this neuropeptide system in hippocampal memory processing.

2.
Neurobiol Learn Mem ; 205: 107829, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37734437

ABSTRACT

Glucocorticoid administration, before or after fear memory reactivation, impairs subsequent fear memory expression, but the underlying mechanisms are not well understood. The present study examined the role of basolateral amygdala (BLA) ß-adrenoceptors in the effects of intra-BLA corticosterone injection on fear memory in rats. Bilateral cannulae were implanted in the BLA of Wistar male rats. The rats were trained and tested using an inhibitory avoidance task (1 mA footshock for 3 s). Forty-eight hours after training, corticosterone (CORT, 5, 10, or 20 ng/0.5 µl/side) and the ß2-adrenoceptor agonist clenbuterol (CLEN, 10 or 20 ng/0.5 µl/side) or the ß-adrenoceptor antagonist propranolol (PROP, 250 or 500 ng/0.5 µl/side) were injected into the BLA before or right after memory reactivation (retrieval, Test 1). We performed subsequent tests 2 (Test 2), 5 (Test 3), 7 (Test 4), and 9 (Test 5) days after Test 1. The results demonstrated that CORT injection before Test 1 disrupted memory retrieval and reduced fear expression in Tests 2-5, possibly due to enhanced extinction or impaired reconsolidation. CORT injection after Test 1 also impaired reconsolidation and reduced fear expression in Tests 2-5. CLEN prevented, but PROP exacerbated, the effects of CORT on fear expression. The reminder shock did not recover fear memory in CORT-treated animals, suggesting that reconsolidation, not extinction, was affected. These results indicate that glucocorticoids and ß-adrenoceptors in the BLA jointly modulate fear memory reconsolidation and expression. Comprehending the neurobiology of stress and the impact of glucocorticoids on fear memory may lead to new treatments for stress and trauma-induced disorders such as PTSD.


Subject(s)
Basolateral Nuclear Complex , Glucocorticoids , Rats , Male , Animals , Glucocorticoids/pharmacology , Corticosterone/metabolism , Basolateral Nuclear Complex/metabolism , Rats, Wistar , Amygdala/physiology , Fear/physiology , Receptors, Adrenergic, beta/metabolism
3.
Metab Brain Dis ; 38(7): 2231-2241, 2023 10.
Article in English | MEDLINE | ID: mdl-37566156

ABSTRACT

Autism is a neurobehavioral disease that induces cognitive and behavioral alterations, usually accompanied by oxidative stress in the brain. Crocus sativus (saffron) and its active ingredient, crocin, have potent antioxidative effects that may benefit autistic behaviors. This study aimed to determine the effects of saffron extract and crocin against brain oxidative stress and behavioral, motor, and cognitive deficits in an animal model of autism in male offspring rats. 14 female rats were randomly divided into the saline and valproic acid (VPA) groups. Then, they were placed with mature male rats to mate and produce offspring. VPA (500 mg/kg, i.p.) was injected on day 12.5 of pregnancy (gestational day, GD 12.5) to induce an experimental model of autism. 48 male pups were left undisturbed for 29 days. First-round behavioral tests (before treatments) were performed on 30-33 post-natal days (PND), followed by 28 days of treatment (PND 34-61) with saffron (30 mg/kg, IP), crocin (15 or 30 mg/kg, i.p.), or saline (2 ml/kg, i.p.). The second round of behavioral tests (after treatments) was performed on PND 62-65 to assess the effects of the treatments on behavioral and cognitive features. In the end, animals were sacrificed under deep anesthesia, and their brains were dissected to evaluate the brain oxidative stress parameters, including malondialdehyde (MDA), glutathione (GSH), and catalase (CAT). VPA injection into female rats increased anxiety-like behaviors, enhanced pain threshold, impaired motor functions, disturbed balance power, increased MDA, and decreased GSH and CAT in their male offspring. 28 days of treatment with saffron or crocin significantly ameliorated behavioral abnormalities, reduced MDA, and increased GSH and CAT levels. Brain oxidative stress has been implicated in the pathophysiology of autistic-like behaviors. Saffron and crocin ameliorate anxiety-like behaviors, pain responses, motor functions, and brain oxidative stress parameters in an experimental model of autism. Saffron and crocin may hold promise as herbal-based pharmacological treatments for individuals with autism. However, further histological evidence is needed to confirm their efficacy.


Subject(s)
Autistic Disorder , Crocus , Prenatal Exposure Delayed Effects , Pregnancy , Rats , Male , Female , Animals , Humans , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Autistic Disorder/chemically induced , Crocus/metabolism , Rats, Wistar , Oxidative Stress , Brain/metabolism , Glutathione/metabolism , Disease Models, Animal , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/drug therapy
4.
Brain Behav ; 13(11): e3224, 2023 11.
Article in English | MEDLINE | ID: mdl-37596045

ABSTRACT

BACKGROUND: Prenatal exposure to valproic acid (VPA) may enhance the risk of autism spectrum disorder (ASD) in children. This study investigated the effect of Prangos ferulacea (L.) on behavioral alterations, hippocampal oxidative stress markers, and apoptotic deficits in a rat model of autism induced by valproic acid. METHODS: Pregnant rats received VPA (600 mg/kg, intraperitoneally [i.p.]) or saline on gestational day 12.5 (E 12.5). Starting from the 30th postnatal day (PND 30), the pups were i.p. administered Prangos ferulacea (PF, 100 and 200 mg/kg), or the vehicle, daily until PND 58. On PND 30 and 58, various behavioral tasks were used to evaluate pups, including the open field, elevated plus-maze, hot-plate, and rotarod test. On PND 65, the animals were euthanized, and their brains were removed for histopathological and biochemical assay. RESULTS: Prenatal exposure to VPA caused significant behavioral changes in the offspring, reversed by administering an extract of Prangos ferulacea (L.). Additionally, prenatal VPA administration resulted in increased levels of malondialdehyde and deficits in antioxidant enzyme activities in the hippocampus, including catalase and glutathione, ameliorated by PF. Likewise, postnatal treatment with PF improved VPA-induced dysregulation of Bax and Blc2 in the hippocampus and reduced neuronal death in CA1, CA3, and dentate gyrus. CONCLUSION: The findings of this study suggest that postnatal administration of PF can prevent VPA-induced ASD-like behaviors by exhibiting antiapoptotic and antioxidant properties. Therefore, PF may have the potential as an adjunct in the management of ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Female , Child , Rats , Animals , Valproic Acid , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Antioxidants/pharmacology , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/drug therapy , Prenatal Exposure Delayed Effects/pathology , Rats, Wistar , Hippocampus/pathology , Social Behavior , Behavior, Animal/physiology , Oxidative Stress , Disease Models, Animal
5.
Brain Sci ; 13(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37508942

ABSTRACT

Humans have lived in a dynamic environment fraught with potential dangers for thousands of years. While fear and stress were crucial for the survival of our ancestors, today, they are mostly considered harmful factors, threatening both our physical and mental health. Trauma is a highly stressful, often life-threatening event or a series of events, such as sexual assault, war, natural disasters, burns, and car accidents. Trauma can cause pathological metaplasticity, leading to long-lasting behavioral changes and impairing an individual's ability to cope with future challenges. If an individual is vulnerable, a tremendously traumatic event may result in post-traumatic stress disorder (PTSD). The hypothalamus is critical in initiating hormonal responses to stressful stimuli via the hypothalamic-pituitary-adrenal (HPA) axis. Linked to the prefrontal cortex and limbic structures, especially the amygdala and hippocampus, the hypothalamus acts as a central hub, integrating physiological aspects of the stress response. Consequently, the hypothalamic functions have been attributed to the pathophysiology of PTSD. However, apart from the well-known role of the HPA axis, the hypothalamus may also play different roles in the development of PTSD through other pathways, including the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-gonadal (HPG) axes, as well as by secreting growth hormone, prolactin, dopamine, and oxytocin. This review aims to summarize the current evidence regarding the neuroendocrine functions of the hypothalamus, which are correlated with the development of PTSD. A better understanding of the role of the hypothalamus in PTSD could help develop better treatments for this debilitating condition.

6.
Neurobiol Learn Mem ; 203: 107797, 2023 09.
Article in English | MEDLINE | ID: mdl-37385522

ABSTRACT

Glucocorticoid receptors (GRs) of the basolateral amygdala (BLA) play an important role in memory reconsolidation. The present study investigated the role of the BLA GRs in the late reconsolidation of fear memory using an inhibitory avoidance (IA) task in male Wistar rats. Stainless steel cannulae were implanted bilaterally into the BLA of the rats. After 7 days of recovery, the animals were trained in a one-trial IA task (1 mA, 3 s). In Experiment One, 48 h after the training session, the animals received 3 systemic doses of corticosterone (CORT; 1, 3, or 10 mg/kg, i.p.) followed by an intra-BLA microinjection of the vehicle (0.3 µl/side) at different time points (immediately, 12, or 24 h) after memory reactivation. Memory reactivation was performed by returning the animals to the light compartment while the sliding door was open. No shock was delivered during memory reactivation. CORT (10 mg/kg) injection 12 h after memory reactivation most effectively impaired the late memory reconsolidation (LMR). In the second part of Experiment One, immediately, 12, or 24 h after memory reactivation, GR antagonist RU38486 (RU; 1 ng/0.3 µl/side) was injected into BLA following a systemic injection of CORT (10 mg/kg) to examine whether it would block the CORT effect. RU inhibited the impairing effects of CORT on LMR. In Experiment Two, the animals received CORT (10 mg/kg) with time windows immediately, 3, 6, 12, and 24 h after memory reactivation. Again, CORT (10 mg/kg) injection 12 h after memory reactivation impaired LMR. Memory reactivation was performed in the third Experiment, 7, 14, 28, or 56 days after the training session. Injection of CORT (10 mg/kg) 12 h later had no significant effect on the LMR. The impairing effect of CORT was seen only in 2-day-old but not 7, 14, 28, and 56-day-old memories. GRs located in BLA seem to play an important role in the LMR of young memory, as with increasing the age of memories, they become less sensitive to manipulation.


Subject(s)
Basolateral Nuclear Complex , Rats , Male , Animals , Receptors, Glucocorticoid/physiology , Corticosterone/pharmacology , Rats, Wistar , Fear
7.
Neurosci Lett ; 808: 137302, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37207715

ABSTRACT

Reconsolidation is an active process induced following the reactivation of previously consolidated memories. Recent studies suggest brain corticosteroid receptors may participate in the modulation of fear memory reconsolidation. Glucocorticoid receptors (GRs), with 10-fold lower affinity than mineralocorticoid receptors (MRs), are mainly occupied during the peak of the circadian rhythm, and after stress, so they probably have a more critical role than MRs in memory phases during stressful situations. This study investigated the role of dorsal and ventral hippocampal (DH and VH) GRs and MRs on fear memory reconsolidation in rats. Male Wistar rats with surgically implanted bilaterally cannulae at the DH and VH were trained and tested in an inhibitory avoidance task. The animals received bilateral microinjections of vehicle (0.3 µl/side), corticosterone (3 ng/0.3 µl/side), the GRs antagonist RU38486 (3 ng/0.3 µl/side), or the MRs antagonist spironolactone (3 ng/0.3 µl/side) immediately after memory reactivation. Moreover, drugs were injected into VH 90 min after memory reactivation. Memory tests were performed 2, 9, 11, and 13 days after memory reactivation. Results indicated that injection of corticosterone into the DH but not VH immediately after memory reactivation significantly impaired fear memory reconsolidation. Moreover, corticosterone injection into VH 90 min after memory reactivation impaired fear memory reconsolidation. RU38486, but not spironolactone reversed these effects. These findings indicate that corticosterone injection into the DH and VH via GRs activation impairs the reconsolidation of fear memory in a time-dependent manner.


Subject(s)
Corticosterone , Mifepristone , Rats , Male , Animals , Corticosterone/pharmacology , Rats, Wistar , Mifepristone/pharmacology , Fear/physiology , Receptors, Glucocorticoid , Spironolactone/pharmacology , Hippocampus
8.
Pharmacol Biochem Behav ; 225: 173560, 2023 04.
Article in English | MEDLINE | ID: mdl-37094708

ABSTRACT

This study investigated the interactive effect of glucocorticoid and ß-adrenoceptors in the infralimbic (IL) cortex on the acquisition and consolidation of fear extinction in rats' auditory fear conditioning (AFC) task. On day 1, rats underwent habituation for 9 min (12 tones, 10 s, 4 kHz, 80 dB, without footshock). On day 2 (conditioning), rats received 3 mild electrical footshocks (US; 2 s, 0.5 mA) paired with the auditory-conditioned stimulus (CS; tone: 30 s, 4 kHz, 80 dB). On days 3-5 (Ext 1-3), rats received 15 tones with no footshock in the test box. Intra-IL injection of corticosterone (CORT, 20 ng/0.5 µl per side) before Ext 1 and after Ext 1-2, respectively, facilitated the acquisition and consolidation of fear memory extinction. Intra-IL injection of the ß2-adrenoceptor agonist clenbuterol (CLEN, 50 ng/0.5 µl per side) inhibited, but the ß-adrenoceptor antagonist propranolol (PROP, 500 ng/0.5 µl per side) enhanced the facilitatory effects of CORT on fear memory extinction. CORT injection before the acquisition of fear extinction increased p-ERK levels in the IL. Co-injection of CORT with CLEN increased, but PROP decreased p-ERK activities. CORT injection after the consolidation of fear extinction increased p-CREB in the IL. Co-injection of CORT with CLEN increased, but PROP reduced p-CREB activities. Our findings show that corticosterone facilitates the acquisition and consolidation of fear memory extinction. GRs and ß-adrenoceptors in the IL jointly regulate fear memory extinction via ERK and CREB signaling pathways. This pre-clinical animal study may highlight the effect of GRs and ß-adrenoceptors of the IL cortex in regulating fear memory processes in fear-related disorders such as PTSD.


Subject(s)
Corticosterone , Glucocorticoids , Rats , Animals , Glucocorticoids/metabolism , Glucocorticoids/pharmacology , Corticosterone/pharmacology , Extinction, Psychological , Fear , Rats, Sprague-Dawley , Prefrontal Cortex/metabolism , Receptors, Adrenergic
9.
Physiol Behav ; 265: 114156, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36918107

ABSTRACT

This study investigated the interactive effect of glucocorticoid and Gamma-aminobutyric acid (GABA) receptors in the Infralimbic (IL) cortex on fear extinction in rats' auditory fear conditioning task (AFC). Animals received 3 conditioning trial tones (conditioned stimulus, 30 s, 4 kHz, 80 dB) co-terminated with a footshock (unconditioned stimulus, 0.8 mA, 1 s). Extinction testing was conducted over 3 days (Ext 1-3) after conditioning. Intra-IL injection of corticosterone (CORT, 20 ng/0.3 µl/side) was performed 15 min before the first extinction trial (Ext 1) which attenuated auditory fear expression in subsequent extinction trials (Ext 1-3), demonstrating fear memory extinction enhancement. Co-injection of the GABAA agonist muscimol (250 ng/0.3 µl/side) or the GABAB agonist baclofen (250 ng/0.3 µl/side) 15 min before corticosterone, did not significantly affect the facilitative effects of corticosterone on fear extinction. However, co-injection of the GABAA antagonist bicuculline (BIC, 100 ng/0.3 µl/side) or the GABAB antagonist CGP35348 (CGP, 100 ng/0.3 µl/side) 15 min before corticosterone, blocked the facilitative effects of corticosterone on fear extinction. Moreover, extracellular signal-regulated kinase (ERK) and cAMP response element-binding (CREB) in the IL were examined by Western blotting analysis after the first extinction trial (Ext 1) in some groups. Intra-IL injection of corticosterone increased the ERK activity but not CREB. Co-injection of the bicuculline or CGP35348 blocked the enhancing effect of corticosterone on ERK expression in the IL. Glucocorticoid receptors (GRs) activation in the IL cortex by corticosterone increased ERK activity and facilitated fear extinction. GABAA or GABAB antagonists decreased ERK activity and inhibited corticosterone's effect. GRs and GABA receptors in the IL cortex jointly modulate the fear extinction processes via the ERK pathway. This pre-clinical animal study may highlight GRs and GABA interactions in the IL cortex modulating fear memory processes in fear-related disorders such as post-traumatic stress disorder (PTSD).


Subject(s)
Corticosterone , Glucocorticoids , Rats , Animals , Glucocorticoids/metabolism , Corticosterone/pharmacology , Corticosterone/metabolism , Extinction, Psychological/physiology , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/pharmacology , Receptors, GABA/metabolism , Fear/physiology , Bicuculline/pharmacology , Bicuculline/metabolism , Rats, Sprague-Dawley , Prefrontal Cortex/metabolism , Receptors, Glucocorticoid/metabolism , gamma-Aminobutyric Acid/metabolism
10.
Behav Brain Res ; 442: 114310, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36706807

ABSTRACT

The extinction of auditory fear conditioning (AFC) refers to reducing the fear responses induced following repeated presentation of a conditioned stimulus (tone) in the absence of an unconditioned stimulus (electric foot shock). Glucocorticoid receptors (GRs) play an important role in extinction, but the underlying neurobiological mechanisms are unclear. This study aimed to investigate the interaction between glucocorticoids and ß-adrenoceptors of the infra-limbic cortex (IL) in regulating the acquisition and consolidation of fear memory extinction in rats. Male rats were trained to AFC and received three trial tones (30 s, 4 kHz, 80 dB) co-terminated with a footshock (0.8 mA, 1 s; unconditioned stimulus). Extinction trials were conducted over 3 days after training (Ext 1-3). In experiment 1, rats received clenbuterol (0.25 mg/kg/2 ml, IP) as a ß2-adrenoceptor agonist or propranolol (2.5 mg/kg/2 ml, IP) as a ß-adrenoceptors antagonist before Ext 1 and immediately after Ext 1 and Ext 2 followed by systemic injection of corticosterone (3 mg/kg/2 ml, IP). In Experiment 2, separate groups of rats received a bilateral intra-IL injection of clenbuterol (50 ng/0.5 µl/side) or propranolol (500 ng/0.5 µl/side) followed by a systemic injection of corticosterone (3 mg/kg/2 ml) before Ext 1 and immediately after Ext 1 and Ext 2. Results indicated that systemic and intra-IL injections of clenbuterol and propranolol inhibited and increased the facilitative effects of corticosterone on fear memory extinction, respectively. These findings show that activating ß-adrenergic receptors in the IL mediates glucocorticoid effects on the acquisition and consolidation of auditory-conditioned fear memory extinction.


Subject(s)
Clenbuterol , Memory Consolidation , Rats , Male , Animals , Corticosterone/pharmacology , Propranolol/pharmacology , Extinction, Psychological/physiology , Rats, Sprague-Dawley , Clenbuterol/pharmacology , Glucocorticoids/pharmacology , Receptors, Adrenergic, beta , Fear/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...