Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6479, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37838722

ABSTRACT

Global spread of multidrug-resistant, hospital-adapted Staphylococcus epidermidis lineages underscores the need for new therapeutic strategies. Here we show that many S. epidermidis isolates belonging to these lineages display cryptic susceptibility to penicillin/ß-lactamase inhibitor combinations under in vitro conditions, despite carrying the methicillin resistance gene mecA. Using a mouse thigh model of S. epidermidis infection, we demonstrate that single-dose treatment with amoxicillin/clavulanic acid significantly reduces methicillin-resistant S. epidermidis loads without leading to detectable resistance development. On the other hand, we also show that methicillin-resistant S. epidermidis is capable of developing increased resistance to amoxicillin/clavulanic acid during long-term in vitro exposure to these drugs. These findings suggest that penicillin/ß-lactamase inhibitor combinations could be a promising therapeutic candidate for treatment of a high proportion of methicillin-resistant S. epidermidis infections, although the in vivo risk of resistance development needs to be further addressed before they can be incorporated into clinical trials.


Subject(s)
Penicillins , Staphylococcal Infections , Humans , Penicillins/pharmacology , Penicillins/therapeutic use , beta-Lactamase Inhibitors/pharmacology , Staphylococcus epidermidis , Staphylococcal Infections/drug therapy , Clavulanic Acid/pharmacology , Clavulanic Acid/therapeutic use , Amoxicillin/pharmacology , Amoxicillin/therapeutic use , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
2.
Microbiol Spectr ; : e0421322, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36815781

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) clonal-complex 398 (CC398) is the dominant livestock-associated (LA) MRSA lineage in European livestock and an increasing cause of difficult-to-treat human disease. LA-CC398 MRSA evolved from a diverse human-associated methicillin-sensitive population, and this transition from humans to livestock was associated with three mobile genetic elements (MGEs). In this study, we apply transposon-directed insertion site sequencing (TraDIS), a high-throughput transposon mutagenesis approach, to investigate genetic signatures that contribute to LA-CC398 causing disease in humans. We identified 26 genes associated with LA-CC398 survival in human blood and 47 genes in porcine blood. We carried out phylogenetic reconstruction on 1,180 CC398 isolates to investigate the genetic context of all identified genes. We found that all genes associated with survival in human blood were part of the CC398 core genome, while 2/47 genes essential for survival in porcine blood were located on MGEs. Gene SAPIG0966 was located on the previously identified Tn916 transposon carrying a tetracycline resistance gene, which has been shown to be stably inherited within LA-CC398. Gene SAPIG1525 was carried on a phage element, which in part, matched phiSa2wa_st1, a previously identified bacteriophage carrying the Panton-Valentine leucocidin (PVL) virulence factor. Gene deletion mutants constructed in two LA-CC398 strains confirmed that the SAPIG0966 carrying Tn916 and SAPIG1525 were important for CC398 survival in porcine blood. Our study shows that MGEs that carry antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for host adaptation. IMPORTANCE CC398 is the dominant type of methicillin-resistant Staphylococcus aureus (MRSA) in European livestock and a growing cause of human infections. Previous studies have suggested MRSA CC398 evolved from human-associated methicillin-sensitive Staphylococcus aureus and is capable of rapidly readapting to human hosts while maintaining antibiotic resistance. Using high-throughput transposon mutagenesis, our study identified 26 and 47 genes important for MRSA CC398 survival in human and porcine blood, respectively. Two of the genes important for MRSA CC398 survival in porcine blood were located on mobile genetic elements (MGEs) carrying resistance or virulence genes. Our study shows that these MGEs carrying antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for blood infection and host adaptation.

3.
J Med Microbiol ; 71(7)2022 Jul.
Article in English | MEDLINE | ID: mdl-35867942

ABSTRACT

Introduction. We recently revealed that a significant proportion of clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates are susceptible to pencillins and clavulanic acid (potentiated penicillins), including widely available combinations such as co-amoxiclav. These isolates also showed increased susceptibility to oxacillin on Iso-Sensitest Agar (ISA).Hypothesis/Gap Statement. The increased susceptibility to oxacillin displayed on ISA by these MRSA isolates may be used to distinguish them from the resistant ones.Aim. We aimed to develop a method to simultaneously screen a S. aureus clinical isolate for its susceptibility to methicillin and potentiated penicillins.Methodology. A double-disc diffusion method using 10 µg cefoxitin and 1 µg oxacillin discs on ISA was developed and tested against a panel of 120 whole genome-sequenced MRSA isolates. The sensitivity of the method was compared with that of previously published genotypic and phenotypic methods. In addition, double-disc diffusion was performed for all isolates on Müller-Hinton agar (MHA) following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) protocol.Results. All isolates (120/120) were reconfirmed to be phenotypically MRSA, as indicated by the result of cefoxitin disc diffusion testing. All isolates (40/40) that had a pencillins and clavulanic acid (Pen-Clav)-resistant genotype were not inhibited by oxacillin, while 77/80 (96.3 %) isolates that had a Pen-Clav-susceptible genotype were inhibited by oxacillin on ISA. The results also showed that the EUCAST method using MHA correctly identified all isolates as MRSA but failed to distinguish the Pen-Clav-susceptible isolates from the Pen-Clav-resistant isolates.Conclusions. This double-disc diffusion method using ISA could be used to accurately screen for clinical MRSA isolates and determine their susceptibility to Pen-Clav simultaneously, rapidly identifying MRSA infections that might be suitable for treatment with potentiated penicillins.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Agar , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Cefoxitin/pharmacology , Clavulanic Acid , Humans , Microbial Sensitivity Tests , Oxacillin/pharmacology , Staphylococcus aureus
4.
Nature ; 602(7895): 135-141, 2022 02.
Article in English | MEDLINE | ID: mdl-34987223

ABSTRACT

The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two ß-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.


Subject(s)
Anti-Bacterial Agents/history , Arthrodermataceae/metabolism , Hedgehogs/metabolism , Hedgehogs/microbiology , Methicillin Resistance/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Selection, Genetic/genetics , Animals , Anti-Bacterial Agents/metabolism , Arthrodermataceae/genetics , Denmark , Europe , Evolution, Molecular , Geographic Mapping , History, 20th Century , Humans , Methicillin-Resistant Staphylococcus aureus/metabolism , New Zealand , One Health , Penicillins/biosynthesis , Phylogeny , beta-Lactams/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...