Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(8): e19239, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37664755

ABSTRACT

The most prevalent natural source of hydrocolloids, cosmetics, medications, and nutraceuticals is marine seaweed (macroalgae). Numerous bioactivities, including antiviral, anticancer, anti-inflammatory, and immunomodulatory characteristics, have been found in bioactive substances such as polyphenols and sulfated and non-sulfated polysaccharides. As a result, new start-up projects and industries based on seaweed are emerging in all regions of the world with abundant marine biodiversity. In this current investigation, the anti-inflammatory activity of two different marine macroalgae Caulerpa racemosa (CR) and Caulerpa sertularioides (CS) was evaluated. Consequently, CS demonstrated more anti-inflammatory and antioxidant effects at a lower dose than CR. The IC50 value for DPPH inhibition was 456.1 µg/mL, and 180.9 µg/mL for CS and CR respectively. A similar result was obtained in the case of protein denaturation (PD), membrane stabilization (MS), and protease inhibition (PI) anti-inflammatory assays with 127.2 µg/mL, 135.5 µg/mL, and 71.88 µg/mL for CR, and 66.78 µg/mL, 88.96 µg/mL, and 59.54 µg/mL for CS respectively. Based on the SDS-PAGE, the molecular weight of lectin responsible for the anti-inflammatory activity was determined as 17 kDa. Protein mass fingerprinting was performed for the particular lectin by in-gel trypsin digestion, MALDI-MS analysis, and Mascot peptide mass fingerprinting. Because of this, the unidentified lectin protein was discovered to be a remorin-like protein that shared 65% of its sequence with the remorin-like protein of Aegilops tauschii subsp. tauschii. Therefore, it is the hitherto report on the presence of remorin-like protein from the green macroalga Caulerpa sertularioides.

2.
Sci Rep ; 11(1): 17233, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446729

ABSTRACT

Plastic (polyethylene) pollution is a severe cause of deterioration of a healthy environment. For example, ingestion of plastics in the animal gut, clogging of water canals and retarded solid waste management. Many conventional methods of polyethylene degradation include UV photooxidation, thermal oxidation, incineration, chemical oxidation and landfill are being practiced. However, these methods are not feasible, costlier and not a complete solution for this global issue. Therefore, plausible, alternative solution for this issue is biodegradation. Microbes such as bacteria, fungi and algae are involved in polyethylene degradation in its natural habitat. Among them, algae were given very less importance. In our present study, a potential microalga, morphologically identified as Uronema africanum Borge, isolated from a waste plastic bag collected from a domestic waste dumping site in a freshwater lake. This microalga was further treated with the LDPE sheet in BBM culture medium. Based on the results obtained from light microscopy, dark field microscopy, GC-MS, FT-IR, SEM and AFM, it was concluded that the microalga has initiated degradation of LDPE sheet within 30 days of incubation. Concurrently, the configuration of corrosions, abrasions, grooves and ridges were found similar with the morphological features of the microalga. For example, the configuration of the radial disc-like attachment structure of the microalga was found corresponding to the abrasions on the surface of LDPE sheet at an average size of 20-30 µm in diameter. Whereas, the configuration of ridges and grooves were found similar with the filamentous nature of the microalga (10-15 µm width). This is a hitherto report on the biodegradation of LDPE sheet by the microalga Uronema africanum Borge.


Subject(s)
Chlorophyta/metabolism , Environmental Pollutants/metabolism , Microalgae/metabolism , Polyethylene/metabolism , Biodegradation, Environmental , Environmental Pollutants/chemistry , Gas Chromatography-Mass Spectrometry , Microalgae/isolation & purification , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Polyethylene/chemistry , Spectroscopy, Fourier Transform Infrared , Waste Management/methods
3.
Sci Rep ; 9(1): 12185, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31434919

ABSTRACT

Highly active antiretroviral therapy (HAART) is the only available remedial measure to treat HIV infected patients, as recognized by the WHO. However, it is associated with toxicity (nephrotoxicity), high cost and most preferably drug resistance in the first-line treatment. Wherefore, potential and novel natural source is the only option for the modern world to challenge this global issue. In recent years, sulfated polysaccharide from marine macroalgae shown to be biologically active as anti-inflammatory, anticoagulant, antitumor, immunomodulatory and antiviral agents. As a direct inhibitor of HIV including other retroviruses, it is considered as a "new generation antiretroviral drug". In our present study, Fucoidan, a sulfated polysaccharide has been extracted from two different macroalgae Dictyota bartayesiana (DD) and Turbinaria decurrens (TD) based on hot water extraction method and further confirmed by FT-IR and RP-HPLC methods. Both the crude and purified fucoidan samples were evaluated for anti-HIV activity after ion exchange chromatography purification. The maximum inhibitory activity of crude and purified fucoidan samples are 90.5% and 89% in the fucoidan extracts of DD. Whereas, it was 89.7% and 92% in the fucoidan extracts of TD. Simultaneously, the IC50 values were determined and recorded as 1.56 µg/ml and 57.6 ng/ml in both the crude and purified fucoidan extracts of DD respectively. Similarly, for TD, it was 3 µg/ml and 131.7 ng/ml in the fucoidan extracts of TD. Therefore, further extensive research work is the most needful to fill the gaps to develop this sulfated polysaccharide as a potential drug for the treatment of HIV patients.


Subject(s)
Antiviral Agents/pharmacology , HIV-1/drug effects , Polysaccharides/chemistry , Seaweed/chemistry , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase , Humans , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Seaweed/metabolism , Spectroscopy, Fourier Transform Infrared , Sulfates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...