Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37703437

ABSTRACT

Iron (Fe) is an important element for our body since it takes part in a huge variety of metabolic processes. However, the direct incorporation of Fe into food fortification causes a number of problems along with undesirable organoleptic properties. Thus, encapsulation has been suggested to alleviate this problem. This study first sheds more light on the Fe encapsulation strategies and comprehensively explains the results of Fe encapsulation studies in the last decade. Then, the latest attempts to use Fe (in free or encapsulated forms) to fortify foods such as bakery products, dairy products, rice, lipid-containing foods, salt, fruit/vegetable-based products, and infant formula are presented. Double emulsions are highly effective at keeping their Fe content and display encapsulation efficiency (EE) > 88% although it decreases upon storage. The encapsulation by gel beads possesses several advantages including high EE, as well as reduced and great Fe release in gastric and duodenal conditions, respectively. Cereals, particularly bread and wheat, are common staple foods globally; they are very suitable for food fortification by Fe derivatives. Nevertheless, the majority of Fe in flour is available as salts of phytic acid (IP6) and phytates, reducing Fe bioavailability in the human body. The sourdough process degrades IP6 completely while Chorleywood Bread Making Process and conventional processes decrease it by 75% in comparison with whole meal flour.

2.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36519525

ABSTRACT

The most commonly used vesicular systems in the food industry include liposomes, niosomes, phytosomes, or transfersomes. This review focuses on showing how nano-vesicular carriers (NVCs) amend the properties of bioactive compounds (bioactives), making them suitable for food applications, especially functional foods. In this research, we elaborate on the question of whether bioactive-loaded NVCs affect various food aspects such as their antioxidant capacity, or sensory properties. This review also shows how NVCs improve the long-term release profile of bioactives during storage and at different pH values. Besides, the refinement of digestibility and bioaccessibility of diverse bioactives through NVCs in the gastrointestinal tract is elucidated. NVCs allow for stable vesicle formation (e.g. from anthocyanins) which reduces their cytotoxicity and proliferation of cancer cells, prolongs the release bioactives (e.g. d-limonene) with no critical burst, reduces the biofilm formation capacity of both Gram-positive/negative strains and their biofilm gene expression is down-regulated (in the case of tannic acid), low oxidation (e.g. iron) is endured when exposed to simulated gastric fluid, and unpleasant smell and taste are masked (in case of omega-3 fatty acids). After the incorporation of bioactive-loaded NVCs into food products, their antioxidant capacity is enhanced, maintaining high encapsulation efficiency and enduring pasteurization conditions, and they are not distinguished from control samples in sensory evaluation despite the reverse situation about free bioactives.

3.
J Microencapsul ; 39(3): 226-238, 2022 May.
Article in English | MEDLINE | ID: mdl-35384786

ABSTRACT

In this study, chitosan-coated niosome (ChN) was utilised for bioavailability enhancement of curcumin (Cn) and boswellic acids (BAs). The bare niosome (BN) was prepared by the heating method and optimised by using the mixture design procedure. Physicochemical stability, as well as the in vitro release, and bioavailability of Cn and BAs in BN and ChN were studied. The optimised BN had a mean diameter of 70.00 ± 0.21 nm and surface charge of -31.00 ± 0.25 mv, which changed to 60.01 ± 0.20 nm and +40.00 ± 0, respectively, in ChN. In-vitro digestion study revealed chitosan layer augmented the bioavailability of Cn and BAs to 79.02 ± 0.13 and 81 ± 0.10, respectively. The chitosan layer obviously improved the physical stability of Cn and BA in the niosome vehicle, by means of vesicle size, zeta potential, and encapsulation efficiency. The ChN was considered to be promising delivery system for increasing the bioavailability of Cn and BAs.


Subject(s)
Chitosan , Curcumin , Nanoparticles , Digestion , Drug Carriers , Liposomes , Particle Size
4.
Sci Rep ; 12(1): 3572, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246564

ABSTRACT

Despite a great amount of effort, there is still a need for reliable treatments of traumatic brain injury (TBI). Recently, stem cell therapy has emerged as a new avenue to address neuronal regeneration after TBI. However, the environment of TBI lesions exerts negative effects on the stem cells efficacy. Therefore, to maximize the beneficial effects of stem cells in the course of TBI, we evaluated the effect of human neural stem/progenitor cells (hNS/PCs) and curcumin-loaded niosome nanoparticles (CM-NPs) on behavioral changes, brain edema, gliosis, and inflammatory responses in a rat model of TBI. After TBI, hNS/PCs were transplanted within the injury site and CM-NPs were orally administered for 10 days. Finally, the effect of combination therapy was compared to several control groups. Our results indicated a significant improvement of general locomotor activity in the hNS/PCs + CM-NPs treatment group compared to the control groups. We also observed a significant improvement in brain edema in the hNS/PCs + CM-NPs treatment group compared to the other groups. Furthermore, a significant decrease in astrogliosis was seen in the combined treatment group. Moreover, TLR4-, NF-κB-, and TNF-α- positive cells were significantly decreased in hNS/PCs + CM-NPs group compared to the control groups. Taken together, this study indicated that combination therapy of stem cells with CM-NPs can be an effective therapy for TBI.


Subject(s)
Brain Edema , Brain Injuries, Traumatic , Curcumin , Nanoparticles , Neural Stem Cells , Animals , Brain Edema/therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/therapy , Curcumin/pharmacology , Disease Models, Animal , Gliosis/pathology , Rats
5.
J Liposome Res ; 32(3): 284-292, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34957899

ABSTRACT

This study aims to improve the curcumin bio-stability and brain permeability by loading in bare niosome (BN) and chitosan-coated niosome (ChN). Span 60, tween 60, and cholesterol were optimized as niosome shell components to attain the highest encapsulation efficiency (EE), besides the lowest particle size, using the mixture design method. The resulting optimized BN had a mean diameter of 80 ± 0.2 nm and surface charge of -31 ± 0.1 mv, which changed to 85 ± 0.15 nm and 35 ± 0.12 mv, respectively, after applying the chitosan layer. The EE% in bare niosome were about 80 ± 0.2, which changed to 82 ± 0.21 in ChN. The optimized formulation displayed sustained release, following the Hixson-Crowell model.Wistar rats were subjected to intraperitoneal injection (i.p.) of BN and ChN to evaluate the blood-brain barrier permeability of the curcumin. In this regard, ChN significantly increased curcumin concentration in different parts of the liver, plasma, and central nervous system (cerebral cortex, cerebellum, and stratum), compared with BN. Altogether, our results showed that ChN could be used as a promising delivery system for the treatment of some neurological diseases such as Alzheimer's.


Subject(s)
Chitosan , Curcumin , Nanoparticles , Animals , Blood-Brain Barrier , Curcumin/pharmacology , Drug Carriers , Excipients , Liposomes , Particle Size , Rats , Rats, Wistar
6.
Mol Neurobiol ; 57(8): 3391-3411, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32430842

ABSTRACT

Using a novel curcumin-loaded niosome nanoparticle (CM-NP), the present study was designed to evaluate the effect of curcumin on human glioblastoma stem-like cells (GSCs). CM-NP has a diameter of ~ 60 nm and a zeta potential of ~ - 35 mV with a constant physicochemical stability. The cytotoxic effects of free curcumin (CM) and CM-NP were investigated on GSCs obtained during the removal of a brain tumor. Both CM and CM-NP caused a dose-dependent decrease in cell proliferation and viability of GSCs. The IC50 values of CM and CM-NP on GSCs were 50 and 137 µg/ml after 24 h, respectively. CM-NP exerted significantly higher effects on GSC viability, apoptosis, cell cycle arrest, and the expression of Bax, a pro-apoptotic marker, compared with CM. In addition, the migration of GSCs was significantly impaired following the administration of CM-NP compared with CM. Furthermore, CM-NP significantly increased the values of reactive oxygen species and decreased the mRNA expressions of NF-κB and IL-6 of GSCs compared with CM. Our data also revealed that CM-NP could significantly reduce the invasiveness of GSCs compared with CM, possibly via MCP-1-mediated pathways. In addition, CM-NP exhibited a significantly greater inhibitory effect on colony formation of GSCs compared with CM. These data indicate that CM-NP exhibited stronger anti-tumor effects on GSCs than CM. Although further in vivo investigations are warranted, our results suggest that CM-NP could be an ideal carrier to deliver curcumin for potential therapeutic approaches into glioblastoma.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Curcumin/pharmacology , Glioblastoma/pathology , Brain Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Reactive Oxygen Species/metabolism
7.
Talanta ; 206: 120246, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31514901

ABSTRACT

We develop a novel label-free liquid crystal (LC) aptasensor based on intrinsic properties of nematic LCs for ultra-sensitive detection of tetracycline. The aptasensor is assembled by immobilizing aptamers onto the glass slide modified with both homeotropic alignment and silane coupling agents. Designed aptasensor makes use of the target-induced aptamer conformational switching and disruption of the orientation of LCs which lead to an obvious change of the optical appearance from a dark to a bright response. We describe the optimized condition for maintaining the homeotropic orientation of LCs, which are suitable for the tetracycline detection. The average gray-scale intensities of polarizing optical microscopy images were calculated to quantitatively detect tetracycline concentrations. The aptasensor works especially at trace level of tetracycline as low as 0.5 pM. Moreover, the LC aptasensor was successfully used to detect tetracycline in the real milk sample. According to the results, the proposed LC aptasensor for tetracycline detection is simple, ultra-sensitive, label free and ease of preparation.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , DNA/chemistry , Liquid Crystals/chemistry , Tetracycline/analysis , Animals , Anti-Bacterial Agents/analysis , Biphenyl Compounds/chemistry , Food Contamination/analysis , Immobilized Nucleic Acids/chemistry , Limit of Detection , Microscopy, Polarization/methods , Milk/chemistry , Nitriles/chemistry
8.
Int J Biol Macromol ; 104(Pt A): 597-605, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28601644

ABSTRACT

Two types of multi-walled carbon nanotubes (CNT and CNT-OH) at different levels (0.1-0.9wt%) were introduced into starch matrix in order to modify its functional properties. The optimum concentration of each nanotube was selected based on the results of water solubility, water permeability and mechanical experiments. The physico-mechanical data showed that CNT up to 0.7wt% led to a notable increase in water resistance, water barrier property and tensile strength, whilst regarding CNT-OH, these improvements found at 0.9wt%. Therefore, effects of optimized level of each nanotube on the starch film were evaluated by XRD, surface hydrophobicity, wettability and surface energy tests. XRD revealed that the position of starch characteristic peak shifted to higher degree after nanotubes introducing. The hydrophobic character of the film was greatly increased with incorporation of nanoparticles, as evidenced by increased contact angle with greatest value regarding CNT-OH. Moreover, CNT-OH notably decreased the surface free energy of the starch film. Finally, the conformity of both nanocomposites with actual food regulations on biodegradable materials was tested by cytotoxicity assay to evaluate the possibility of application in food packaging sector. Both nanocomposite films had potential of cytotoxic effects, since they could increase cytoplasmic lactate dehydrogenase release from L-929 fibroblast cells in contact with their surface.


Subject(s)
Cytotoxins/chemistry , Cytotoxins/toxicity , Nanotubes, Carbon/chemistry , Starch/chemistry , Wettability , Animals , Cell Line , Food Packaging , Hydroxylation , Mechanical Phenomena , Mice , Nanocomposites/chemistry , Permeability , Steam , Thermodynamics
9.
Int J Biol Macromol ; 104(Pt A): 788-798, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28647524

ABSTRACT

One of the most interesting functions of albumin is the ability to interact with bioactive compounds. This study describes preparation of protein-based nanoparticles (NPs) for the preparation of solid dispersion of curcumin (CN). Fabrication of hydrosol system of dispersed CN in bovine serum albumin (BSA) was approached, followed by cross-linking with glutaraldehyde (Gta). Response surface methodology (RSM) was used to investigate the influence of input factors (pH, CN content and organic phase ratio (r)), on the particle size and CN entrapment efficiency (EE). Particle size, EE and CN loading efficiency (LE) at optimum condition (pH 7, r 10% and 3.4mg of CN content), were found to be in the range of 153-184.4nm, 72.54%, and 14.508µg/mg, respectively. In the optimum formulation, genipin (Gnp) was used at three different levels (0.1-0.2 and 0.3% w/w of BSA), as a safe, natural cross-linker instead of toxic Gta, to address the limitation of oral delivery purpose. AFM and SEM analysis revealed the spherical and smooth surface of Nps. Ninhydrin (NHD) assay and FT-IR analysis confirmed the cross-linking between BSA and Gnp. In vitro release studies ensure the efficiency of the formulation for sustained release of soluble CN.


Subject(s)
Curcumin/administration & dosage , Curcumin/chemistry , Drug Carriers/chemistry , Iridoids/chemistry , Serum Albumin, Bovine/chemistry , Water/chemistry , Administration, Oral , Animals , Cattle , Drug Liberation , Glutaral/chemistry , Particle Size , Solubility
10.
Curr Pharm Des ; 23(18): 2685-2694, 2017.
Article in English | MEDLINE | ID: mdl-28201971

ABSTRACT

BACKGROUND: Light delivery in photodynamic therapy is a challenging issue in deep cancer treatment. To solve this problem, photosensitizers are conjugated to X-ray luminescent nanoparticles. When the complexes are stimulated by X-rays during radiotherapy, the nanoparticles generate light and activate the photosensitizers. METHOD: Core-shell molecularly imprinted polymers (MIPs) were prepared against mitoxantrone (MX) in which TiO2 nanoparticles were applied as a core, diacrylated polycaprolctone as a biodegradable cross-linker and methacrylic acid (MAA) or 4-vinylpyridin (4-VP) as the functional monomer. TiO2 was selected as a scintillator, MX as a photosensitizer and MIP as a drug delivery system in order to evaluate the possibility of using photodynamic therapy (PDT) during radiotherapy in the next studies. Binding properties of polymers and drug release profile were studied and the optimized MIP was characterized by SEM, TEM, EDS, FT-IR and XRD. Also, cytotoxicity and free radical production were also studied in vitro. RESULTS: Data indicated that MAA-based MIP had superior binding properties compared to its non-imprinted polymer (NIP) and higher imprinting factor value than MIP-4VP. Drug release experiments indicated higher MX released amount from MAA-based MIP than the other polymers. MAA-based MIP was selected as an optimized carrier for MX delivery system. According to the results, the size of MX-MIP@TiO2 was reported to be less than 75 nm. The free radical production and cytotoxicity of nanoparticles were also evaluated in vitro. CONCLUSION: The results of the present work proposed the possibility of applying MIP layer as a drug delivery system around TiO2 nanoparticles.


Subject(s)
Drug Delivery Systems , Methacrylates/administration & dosage , Mitoxantrone/administration & dosage , Nanoparticles/administration & dosage , Polyesters/administration & dosage , Titanium/administration & dosage , Acrylates/administration & dosage , Acrylates/chemistry , Acrylates/metabolism , Cell Line, Tumor , Free Radicals/antagonists & inhibitors , Free Radicals/metabolism , Humans , Methacrylates/chemistry , Methacrylates/metabolism , Mitoxantrone/chemistry , Mitoxantrone/metabolism , Nanoparticles/chemistry , Nanoparticles/metabolism , Polyesters/chemistry , Polyesters/metabolism , Titanium/chemistry , Titanium/metabolism , X-Ray Diffraction
11.
Food Chem ; 221: 620-628, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-27979250

ABSTRACT

α-Tocopherol-loaded niosome was developed using modified heating method. The influence of surfactants (Span60 and Tween60) in different mole ratios, presence or absence of cholesterol (Chol) and dicetyl phosphate (DCP) as well as different concentration of α-tocopherol (α-TOC) on mean size, polydispersity index, zeta potential and entrapment efficiency (EE) was evaluated. The results showed that α-TOC loaded niosomes exhibited a small mean size (73.85±0.6-186±0.58nm), narrow size distribution and high EE (61.13±0.52-98.92±0.92). By decreasing the HLB, the EE and stability of the niosomes increased. The DCP and Chol improved the physicochemical properties of niosomes. 3:1 mole ratio of Span 60:Tween 60, 4mg/ml of α-TOC and 25:12.5:2.5 mole ratio of surfactant:Chol:DCP was the optimum formulation in the encapsulation of α-TOC applying niosome system. The niosomes had sustained release profile in the simulated gastric and intestinal fluid.


Subject(s)
Heating/methods , Liposomes/chemistry , alpha-Tocopherol/chemistry
12.
Carbohydr Polym ; 157: 226-235, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-27987922

ABSTRACT

Different electron beam doses (10, 20, 30 and 40kGy) were tested with the purpose of investigating their influences on chitosan/clay (cloisite 20A) nanocomposite film to improve its functional performance by providing a crosslinked matrix. Water resistance, water contact angle and water barrier property of nanocomposite film were increased up to 30kGy, and then drastically decreased at the level of 40kGy. Characteristic diffraction peak of chitosan shifted to low angle with an increase in the interlayer spacing of the nanoclay after 30kGy irradiation, indicating a superlative intercalation. Crystallinity degree of chitosan/clay nanocomposite was increased in the amorphous region as the irradiation dose increased up to 30kGy. However, irradiation at level of 40kGy was converted the crystalline region of nanocomposite film to the amorphous state with losing the chitosan crystallinity. Irradiation increased the film tensile strength due to crosslinking of chitosan chains, with more pronounced effect at 30kGy and decreased it by chain degradation at 40kGy. A glass transition temperature was detected in DSC thermogram of chitosan/clay film, and it shifted to higher temperatures as the irradiation dose increased. Moreover, cold-crystallization exothermic peak of the chitosan/clay film moved to the lower temperature after irradiation, suggesting a faster crystallization rate. FE-SEM showed that the chitosan chains were more intercalated between the nanoclay platelets with increasing the irradiation dose. A progressive decrease in the roughness parameters of 20 and 30kGy irradiated nanocomposite films revealed by atomic force microscopy, whereas irradiation at 40kGy increased roughness values.


Subject(s)
Aluminum Silicates/chemistry , Chitosan/chemistry , Nanocomposites/chemistry , Radiation , Clay , Electrons
13.
Data Brief ; 9: 648-660, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27766296

ABSTRACT

This article presents the complementary data regarding compatibilization of chitosan/κ-carrageenan polyelectrolyte complex for synthesizing of a soft film using ascorbic acid. It includes the thermal-theory for estimating the degradation of κ-carrageenan, as reflected in alteration of the structural properties of the blend. The data has been provided to demonstrate that the blend solution based on chitosan, a polycation, and κ-carrageenan, a polyanion polymer, produces an incompatible polyelectrolyte composite, susceptible to coaservative phase separation. We present further data on water resistance, water barrier property, mechanical parameters, scanning electron micrograph, as well as contact angle image dataset of the chitosan/κ-carrageenan film. The physical data were collected by water solubility and water permeability assays, with a view to elucidate the role of ascorbic acid in the compatibility of polyelectrolyte blends. The mechanical data is obtained from a stress-strain curve for evaluation of tensile strength and elongation at break point of the chitosan/κ-carrageenan film. The microstructure observations were performed using scanning electron micrograph. These dataset confirm fabrication of a soft film in the presence of ascorbic acid, with reduced heterogeneities in the polyelectrolyte film structure. The κ-carrageenan was also treated by a thermal process, prior to inclusion into the chitosan solution, to investigate the impact of this on the mechanical and structural features of the resulting blend. We present the required data and the theoretical analysis supporting the thermal chain degradation of a polymer and its effects on behavior of the film. Additional information, characterizing the hydrophobicity of the surface of the blend layers is obtained by measuring water contact angles using a contact anglemeter.

14.
Int J Nanomedicine ; 11: 3215-23, 2016.
Article in English | MEDLINE | ID: mdl-27478376

ABSTRACT

The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 µm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (µTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum µTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and P<0.001, respectively). This study showed that aluminosilicate sol-gel dip coating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain.


Subject(s)
Dental Bonding , Dental Porcelain/chemistry , Dental Veneers , Nanocomposites/chemistry , Yttrium/chemistry , Zirconium/chemistry , Aluminum Silicates/chemistry , Dental Materials/chemistry , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Tensile Strength , X-Ray Diffraction
15.
Carbohydr Polym ; 142: 167-76, 2016 May 20.
Article in English | MEDLINE | ID: mdl-26917387

ABSTRACT

The purpose of the current research was to study κ-carrageenan degradation behavior under thermal treatment, and its influence on chitosan κ-carrageenan film properties. A pseudo-first-order reaction equation was applied by using reciprocal plots of κ-carrageenan molecular mass versus heating time, which showed a strong dependence on heating time. Incorporation of thermally treated κ-carrageenan into the chitosan had diminished both water resistance and water vapor permeability of the blend, in contrast to those for intact or untreated κ-carrageenan. A dramatic decrease of equilibrium moisture content and tensile strength were noticed, and these parameters were more affected by the longer times. Furthermore, the contact angle of the films was found to be a function of the heating time. Scanning electron microscopy revealed apparent agglomeration of κ-carrageenan through the thermal process. Atomic force microscopy demonstrated that the intact blend had the flattest surface, whilst the blend containing treated κ-carrageenan had high roughness.


Subject(s)
Carrageenan/chemistry , Chitosan/chemistry , Heating , Kinetics , Permeability , Polymerization , Steam/analysis , Surface Properties , Tensile Strength , Water/chemistry
16.
Int J Biol Macromol ; 79: 669-73, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26038107

ABSTRACT

Lactoferrin is a glycoprotein, playing several biological roles. The main goal of our work was to nanoencapsulate the isolated lactoferrin from camel milk through alginate nanocapsuls. We studied the influence of alginate concentration (0.2 and 0.5 w/w%) and encapsulation method (thermal vs. non-thermal treatment) on the encapsulation efficiency, zeta potential, particle size and release of lactoferrin from nanocapsuls. Our results revealed in 0.8 and 0.9 M NaCl fractions, lactoperoxidase was present. So these fractions were not passed to further experiments. On average, we measured the lactoferrin content to be 0.5 g/l within the original camel milk. In general, higher alginate concentration resulted in higher encapsulation efficiency and nanocapsuls prepared with thermal treatment had a higher efficiency (almost 100%) along with smaller particle sizes (mostly<100 nm). By evaluating the release of lactoferrin from nanocapsuls, it was revealed that there was no release at the first 30 min in both pH values (2 and 7). This could be particularly useful since lactoferrin would be maintained intact within stomach conditions and it can reach lower gastrointestinal tract to be delivered safely into the body.


Subject(s)
Alginates/chemistry , Drug Carriers , Lactoferrin/chemistry , Milk/chemistry , Nanoparticles/chemistry , Animals , Camelus , Chromatography, Ion Exchange , Drug Compounding , Drug Liberation , Electrophoresis, Polyacrylamide Gel , Female , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hot Temperature , Lactoferrin/isolation & purification , Lactoperoxidase/isolation & purification , Nanoparticles/ultrastructure , Particle Size
17.
J Mech Behav Biomed Mater ; 29: 317-27, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24140732

ABSTRACT

Despite brilliant properties of glass ionomer cement (GIC), its weak mechanical property poses an obstacle for its use in medical applications. The present research aims to formulate hydroxyapatite/yttria-stabilized zirconia (HA/YSZ) in the composition of GIC to enhance mechanical properties and to improve fluoride release of GIC. HA/YSZ was synthesized via a sol-gel method and characterized by applying X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photo-emission spectroscopy (XPS) and simultaneous thermal analysis (STA) along with transmission electron microscopy (TEM) methods. The synthesized nanocomposite was mixed with GIC at a fixed composition of 5wt%. The effect of different weight percentages of YSZ:HA on GIC was investigated by measuring the compressive strength, diametral tensile strength, microhardness and fluoride release. The results showed that, after 1 and 7 days of setting, the 20wt% nanohydroxyapatite/80wt% stabilized zirconia cement exhibited higher compressive strength (1857-245MPa), higher diametral tensile strength (11-14MPa) and greater microhardness (104-106MPa) as compared with the pure GIC (65-88MPa in compressive strength, 5-9.5MPa in diametral tensile strength and 70-89MPa in microhardness). The reinforced cement, also, exhibited higher fluoride release compared with pure GIC. The artificial neural network (ANN) was trained for modeling the system. Results obtained by ANN have proved to be completely in accordance with expectations.


Subject(s)
Durapatite/chemistry , Glass/chemistry , Nanocomposites/chemistry , Neural Networks, Computer , Polymers/chemistry , Yttrium/chemistry , Zirconium/chemistry , Computer Simulation , Fluorides/chemistry , Mechanical Phenomena
18.
Anal Chim Acta ; 598(1): 51-7, 2007 Aug 13.
Article in English | MEDLINE | ID: mdl-17693306

ABSTRACT

Highly selective and sensitive poly(vinyl chloride) (PVC) membrane electrodes based on 6-methyl-4-{[1-(2-thienyl)methylidene]amino}3-thioxo-3,4-dihydro-1,2,4-triazin-5-(2H)-one (MATDTO) as new carriers for gadolinium ion-selective electrode was reported. The membrane solutions containing PVC, o-nitrophenyl octyl ether (NPOE) as plasticizer, sodium tetraphenyl borate (NaTPB) as lipophilic ionic additive, and MATDTO, displays a calibration response for Gd3+ ions over a wide concentration range of 1.0x10(-6)-1.0x10(-1) M with Nernstian slopes of 19.8+/-0.2 mV per decade and a detection limit as 5.8x10(-7) M. The sensor has a relatively fast response time of <10 s and can be used in the pH range 3.2-8.7 for at least 2 months without any significant divergence in potentials. The selectivity coefficients for mono-, di-, and trivalent cations indicate good selectivity for Gd(III) ions over a large number of interfering cations. The membrane sensor was used as an indicator electrode in the potentiometric titration of Gd(III) ions with EDTA. The proposed electrode was also applied to the determination of concentration of Gd(III) ions in soil and sediment samples and validation with CRMs.


Subject(s)
Copper/analysis , Gadolinium/analysis , Geologic Sediments/chemistry , Ion-Selective Electrodes , Membranes, Artificial , Soil/analysis , Thiophenes/chemistry , Triazines/chemistry , Gadolinium/chemistry , Ions , Potentiometry
19.
Talanta ; 72(3): 1093-9, 2007 May 15.
Article in English | MEDLINE | ID: mdl-19071731

ABSTRACT

This study presents the development of an original electrode, employing 6-methy-4-{[1-(1H-pyrrol-2-yl)methylidene]amino}-3-thioxo-3,4dihydro-1,2,4-triazin-5(2H)-one (PMTO) as a suitable ionophore. Interestingly, the electrode performance provided a very good response for Yb(3+) in a wide concentration range (from 1.0x10(-6) to 1.0x10(-1)molL(-1)) with a detection limit of 4.6x10(-7)molL(-1) and a slope of 19.5+/-0.3mV per decade of Yb(3+) concentration. Furthermore, it possessed a fast response time of about 10s and it functioned in the pH range of 3.3-8.0 with a usage of at least 2 months without observing any deviations. Noticeably, the proposed electrode revealed an excellent selectivity for Yb(3+) over a broad variety of alkali, alkaline earth, transition and heavy metal ions. The practical applicability of the electrode was demonstrated by its utilization as an indicator electrode in the potentiometric titration of Yb(3+) ions with EDTA and in the determination of F(-) in mouth wash samples. Additionally, it was also applied for the determination of Yb(3+) ions in binary mixtures.

SELECTION OF CITATIONS
SEARCH DETAIL
...