Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Genet ; 15: 1405468, 2024.
Article in English | MEDLINE | ID: mdl-39011401

ABSTRACT

Genomic sequencing offers an untargeted, data-driven approach to genetic diagnosis; however, variants of uncertain significance often hinder the diagnostic process. The discovery of rare genomic variants without previously known functional evidence of pathogenicity often results in variants being overlooked as potentially causative, particularly in individuals with undifferentiated phenotypes. Consequently, many neurometabolic conditions, including those in the GABA (gamma-aminobutyric acid) catabolism pathway, are underdiagnosed. Succinic semialdehyde dehydrogenase deficiency (SSADHD, OMIM #271980) is a neurometabolic disorder in the GABA catabolism pathway. The disorder is due to bi-allelic pathogenic variants in ALDH5A1 and is usually characterized by moderate-to-severe developmental delays, hypotonia, intellectual disability, ataxia, seizures, hyperkinetic behavior, aggression, psychiatric disorders, and sleep disturbances. In this study, we utilized an integrated approach to diagnosis of SSADHD by examining molecular, clinical, and metabolomic data from a single large commercial laboratory. Our analysis led to the identification of 16 patients with likely SSADHD along with three novel variants. We also showed that patients with this disorder have a clear metabolomic signature that, along with molecular and clinical findings, may allow for more rapid and efficient diagnosis. We further surveyed all available pathogenic/likely pathogenic variants and used this information to estimate the global prevalence of this disease. Taken together, our comprehensive analysis allows for a global approach to the diagnosis of SSADHD and provides a pathway to improved diagnosis and potential incorporation into newborn screening programs. Furthermore, early diagnosis facilitates referral to genetic counseling, family support, and access to targeted treatments-taken together, these provide the best outcomes for individuals living with either GABA-TD or SSADHD, as well as other rare conditions.

2.
Sci Transl Med ; 12(544)2020 05 20.
Article in English | MEDLINE | ID: mdl-32434850

ABSTRACT

Nitrogen-containing bisphosphonates (N-BPs), such as alendronate, are the most widely prescribed medications for diseases involving bone, with nearly 200 million prescriptions written annually. Recently, widespread use of N-BPs has been challenged due to the risk of rare but traumatic side effects such as atypical femoral fracture (AFF) and osteonecrosis of the jaw (ONJ). N-BPs bind to and inhibit farnesyl diphosphate synthase, resulting in defects in protein prenylation. Yet, it remains poorly understood what other cellular factors might allow N-BPs to exert their pharmacological effects. Here, we performed genome-wide studies in cells and patients to identify the poorly characterized gene, ATRAID Loss of ATRAID function results in selective resistance to N-BP-mediated loss of cell viability and the prevention of alendronate-mediated inhibition of prenylation. ATRAID is required for alendronate inhibition of osteoclast function, and ATRAID-deficient mice have impaired therapeutic responses to alendronate in both postmenopausal and senile (old age) osteoporosis models. Last, we performed exome sequencing on patients taking N-BPs that suffered ONJ or an AFF. ATRAID is one of three genes that contain rare nonsynonymous coding variants in patients with ONJ or an AFF that is also differentially expressed in poor outcome groups of patients treated with N-BPs. We functionally validated this patient variation in ATRAID as conferring cellular hypersensitivity to N-BPs. Our work adds key insight into the mechanistic action of N-BPs and the processes that might underlie differential responsiveness to N-BPs in people.


Subject(s)
Diphosphonates , Nitrogen , Alendronate/pharmacology , Animals , Bone and Bones , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Humans , Mice , Osteoclasts
3.
BMC Public Health ; 18(1): 293, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29486801

ABSTRACT

BACKGROUND: The number of university global health training programs has grown in recent years. However, there is little research on the needs of the global health profession. We therefore set out to characterize the global health employment market by analyzing global health job vacancies. METHODS: We collected data from advertised, paid positions posted to web-based job boards, email listservs, and global health organization websites from November 2015 to May 2016. Data on requirements for education, language proficiency, technical expertise, physical location, and experience level were analyzed for all vacancies. Descriptive statistics were calculated for the aforementioned job characteristics. Associations between technical specialty area and requirements for non-English language proficiency and overseas experience were calculated using Chi-square statistics. A qualitative thematic analysis was performed on a subset of vacancies. RESULTS: We analyzed the data from 1007 global health job vacancies from 127 employers. Among private and non-profit sector vacancies, 40% (n = 354) were for technical or subject matter experts, 20% (n = 177) for program directors, and 16% (n = 139) for managers, compared to 9.8% (n = 87) for entry-level and 13.6% (n = 120) for mid-level positions. The most common technical focus area was program or project management, followed by HIV/AIDS and quantitative analysis. Thematic analysis demonstrated a common emphasis on program operations, relations, design and planning, communication, and management. CONCLUSIONS: Our analysis shows a demand for candidates with several years of experience with global health programs, particularly program managers/directors and technical experts, with very few entry-level positions accessible to recent graduates of global health training programs. It is unlikely that global health training programs equip graduates to be competitive for the majority of positions that are currently available in this field.


Subject(s)
Employment/statistics & numerical data , Global Health , Cross-Sectional Studies , Humans
4.
PLoS One ; 12(5): e0176085, 2017.
Article in English | MEDLINE | ID: mdl-28520786

ABSTRACT

Saccharomyces cerevisiae responds to changes in extracellular inorganic phosphate (Pi) availability by regulating the activity of the phosphate-responsive (PHO) signaling pathway, enabling cells to maintain intracellular levels of the essential nutrient Pi. Pi-limitation induces upregulation of inositol heptakisphosphate (IP7) synthesized by the inositol hexakisphosphate kinase Vip1, triggering inhibition of the Pho80/Pho85 cyclin-cyclin dependent kinase (CDK) complex by the CDK inhibitor Pho81, which upregulates the PHO regulon through the CDK target and transcription factor Pho4. To identify genes that are involved in signaling upstream of the Pho80/Pho85/Pho81 complex and how they interact with each other to regulate the PHO pathway, we performed genome-wide screens with the synthetic genetic array method. We identified more than 300 mutants with defects in signaling upstream of the Pho80/Pho85/Pho81 complex, including AAH1, which encodes an adenine deaminase that negatively regulates the PHO pathway in a Vip1-dependent manner. Furthermore, we showed that even in the absence of VIP1, the PHO pathway can be activated under prolonged periods of Pi starvation, suggesting complexity in the mechanisms by which the PHO pathway is regulated.


Subject(s)
Genome, Fungal , Phosphates/metabolism , Saccharomyces cerevisiae Proteins/genetics , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
5.
Mol Genet Metab ; 117(3): 378-82, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26693895

ABSTRACT

Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by bone fragility and deformity. OI type VI is unique owing to the mineralization defects observed in patient biopsies. Furthermore, it has been reported to respond less well to standard therapy with bisphosphonates [1]. Others and we have previously identified SERPINF1 mutations in patients with OI type VI. SERPINF1 encodes pigment epithelium derived factor (PEDF), a secreted collagen-binding glycoprotein that is absent in the sera of patients with OI type VI. Serpinf1 null mice show increased osteoid and decreased bone mass, and thus recapitulate the OI type VI phenotype. We tested whether restoration of circulating PEDF in the blood could correct the phenotype of OI type VI in the context of protein replacement. To do so, we utilized a helper-dependent adenoviral vector (HDAd) to express human SERPINF1 in the mouse liver and assessed whether PEDF secreted from the liver was able to rescue the bone phenotype observed in Serpinf1(-/-) mice. We confirmed that expression of SERPINF1 in the liver restored the serum level of PEDF. We also demonstrated that PEDF secreted from the liver was biologically active by showing the expected metabolic effects of increased adiposity and impaired glucose tolerance in Serpinf1(-/-) mice. Interestingly, overexpression of PEDF in vitro increased mineralization with a concomitant increase in the expression of bone gamma-carboxyglutamate protein, alkaline phosphatase and collagen, type I, alpha I, but the increased serum PEDF level did not improve the bone phenotype of Serpinf1(-/-) mice. These results suggest that PEDF may function in a context-dependent and paracrine fashion in bone homeostasis.


Subject(s)
Bone and Bones/physiology , Eye Proteins/blood , Eye Proteins/genetics , Liver/metabolism , Nerve Growth Factors/blood , Nerve Growth Factors/genetics , Osteogenesis Imperfecta/physiopathology , Osteogenesis Imperfecta/therapy , Serpins/blood , Serpins/genetics , 1-Carboxyglutamic Acid/genetics , Adenoviridae/genetics , Alkaline Phosphatase/genetics , Animals , Bone Density , Collagen Type I/genetics , Gene Transfer Techniques , Glucose Intolerance , HEK293 Cells , Homeostasis , Humans , Mice , Mice, Knockout , Mutation , Nerve Growth Factors/deficiency , Phenotype , Serpins/deficiency
6.
Mol Genet Metab ; 115(1): 53-60, 2015 May.
Article in English | MEDLINE | ID: mdl-25779879

ABSTRACT

Angiotensin receptor blockers (ARBs) are a group of anti-hypertensive drugs that are widely used to treat pediatric hypertension. Recent application of ARBs to treat diseases such as Marfan syndrome or Alport syndrome has shown positive outcomes in animal and human studies, suggesting a broader therapeutic potential for this class of drugs. Multiple studies have reported a benefit of ARBs on adult bone homeostasis; however, its effect on the growing skeleton in children is unknown. We investigated the effect of Losartan, an ARB, in regulating bone mass and cartilage during development in mice. Wild type mice were treated with Losartan from birth until 6 weeks of age, after which bones were collected for microCT and histomorphometric analyses. Losartan increased trabecular bone volume vs. tissue volume (a 98% increase) and cortical thickness (a 9% increase) in 6-weeks old wild type mice. The bone changes were attributed to decreased osteoclastogenesis as demonstrated by reduced osteoclast number per bone surface in vivo and suppressed osteoclast differentiation in vitro. At the molecular level, Angiotensin II-induced ERK1/2 phosphorylation in RAW cells was attenuated by Losartan. Similarly, RANKL-induced ERK1/2 phosphorylation was suppressed by Losartan, suggesting a convergence of RANKL and angiotensin signaling at the level of ERK1/2 regulation. To assess the effect of Losartan on cartilage development, we examined the cartilage phenotype of wild type mice treated with Losartan in utero from conception to 1 day of age. Growth plates of these mice showed an elongated hypertrophic chondrocyte zone and increased Col10a1 expression level, with minimal changes in chondrocyte proliferation. Altogether, inhibition of the angiotensin pathway by Losartan increases bone mass and accelerates chondrocyte hypertrophy in growth plate during skeletal development.


Subject(s)
Bone Density/drug effects , Bone Development/drug effects , Bone and Bones/drug effects , Chondrocytes/drug effects , Losartan/pharmacology , Angiotensins/drug effects , Angiotensins/metabolism , Animals , Bone Density/physiology , Bone and Bones/diagnostic imaging , Bone and Bones/ultrastructure , Cartilage/drug effects , Cell Differentiation , Chondrocytes/physiology , Female , Growth Plate/drug effects , Hypertrophy/etiology , Losartan/administration & dosage , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Osteoclasts/drug effects , Osteoclasts/physiology , Phosphorylation , RANK Ligand/antagonists & inhibitors , RANK Ligand/metabolism , RAW 264.7 Cells , Radiography
7.
J Biol Chem ; 290(13): 8613-22, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25645914

ABSTRACT

Myopia, the leading cause of visual impairment worldwide, results from an increase in the axial length of the eyeball. Mutations in LEPREL1, the gene encoding prolyl 3-hydroxylase-2 (P3H2), have recently been identified in individuals with recessively inherited nonsyndromic severe myopia. P3H2 is a member of a family of genes that includes three isoenzymes of prolyl 3-hydroxylase (P3H), P3H1, P3H2, and P3H3. Fundamentally, it is understood that P3H1 is responsible for converting proline to 3-hydroxyproline. This limited additional knowledge also suggests that each isoenzyme has evolved different collagen sequence-preferred substrate specificities. In this study, differences in prolyl 3-hydroxylation were screened in eye tissues from P3h2-null (P3h2(n/n)) and wild-type mice to seek tissue-specific effects due the lack of P3H2 activity on post-translational collagen chemistry that could explain myopia. The mice were viable and had no gross musculoskeletal phenotypes. Tissues from sclera and cornea (type I collagen) and lens capsule (type IV collagen) were dissected from mouse eyes, and multiple sites of prolyl 3-hydroxylation were identified by mass spectrometry. The level of prolyl 3-hydroxylation at multiple substrate sites from type I collagen chains was high in sclera, similar to tendon. Almost every known site of prolyl 3-hydroxylation in types I and IV collagen from P3h2(n/n) mouse eye tissues was significantly under-hydroxylated compared with their wild-type littermates. We conclude that altered collagen prolyl 3-hydroxylation is caused by loss of P3H2. We hypothesize that this leads to structural abnormalities in multiple eye tissues, but particularly sclera, causing progressive myopia.


Subject(s)
Myopia/genetics , Procollagen-Proline Dioxygenase/genetics , Amino Acid Sequence , Animals , Collagen Type I/metabolism , Collagen Type IV/metabolism , Cornea/metabolism , Genetic Predisposition to Disease , Humans , Hydroxylation , Lens Capsule, Crystalline/metabolism , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Mutation , Organ Specificity , Phenotype , Procollagen-Proline Dioxygenase/metabolism , Protein Processing, Post-Translational , Sclera/enzymology , Sclera/pathology
8.
J Clin Endocrinol Metab ; 99(11): E2451-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25050900

ABSTRACT

CONTEXT: Two Argentinean siblings (a boy and a girl) from a nonconsanguineous family presented with hypercalcemia, hypercalciuria, hypophosphatemia, low parathyroid hormone (PTH), and nephrocalcinosis. OBJECTIVE: The goal of this study was to identify genetic causes of the clinical findings in the two siblings. DESIGN: Whole exome sequencing was performed to identify disease-causing mutations in the youngest sibling, and a candidate variant was screened in other family members by Sanger sequencing. In vitro experiments were conducted to determine the effects of the mutation that was identified. PATIENTS AND OTHER PARTICIPANTS: Affected siblings (2 y.o. female and 10 y.o male) and their parents were included in the study. Informed consent was obtained for genetic studies. RESULTS: A novel homozygous mutation in the gene encoding the renal sodium-dependent phosphate transporter SLC34A1 was identified in both siblings (c.1484G>A, p.Arg495His). In vitro studies showed that the p.Arg495His mutation resulted in decreased phosphate uptake when compared to wild-type SLC34A1. CONCLUSIONS: The homozygous G>A transition that results in the substitution of histidine for arginine at position 495 of the renal sodium-dependent phosphate transporter, SLC34A1, is involved in disease pathogenesis in these patients. Our report of the second family with two mutated SLC34A1 alleles expands the known phenotype of this rare condition.


Subject(s)
Exome , Hypophosphatemia/genetics , Mutation , Nephrocalcinosis/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Child , Child, Preschool , DNA Mutational Analysis , Female , Humans , Hypercalcemia/genetics , Hypercalciuria/genetics , Male , Parathyroid Hormone/blood , Pedigree , Phenotype
9.
Hum Mol Genet ; 23(18): 4822-31, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24777781

ABSTRACT

Osteogenesis imperfecta (OI) is an inherited brittle bone disorder characterized by bone fragility and low bone mass. Loss of function mutations in FK506-binding protein 10 (FKBP10), encoding the FKBP65 protein, result in recessive OI and Bruck syndrome, of which the latter is additionally characterized by joint contractures. FKBP65 is thought to act as a collagen chaperone, but it is unknown how loss of FKBP65 affects collagen synthesis and extracellular matrix formation. We evaluated the developmental and postnatal expression of Fkbp10 and analyzed the consequences of its generalized loss of function. Fkbp10 is expressed at low levels in E13.5 mouse embryos, particularly in skeletal tissues, and steadily increases through E17.5 with expression in not only skeletal tissues, but also in visceral tissues. Postnatally, expression is limited to developing bone and ligaments. In contrast to humans, with complete loss of function mutations, Fkbp10(-/-) mice do not survive birth, and embryos present with growth delay and tissue fragility. Type I calvarial collagen isolated from these mice showed reduced stable crosslink formation at telopeptide lysines. Furthermore, Fkbp10(-/-) mouse embryonic fibroblasts show retention of procollagen in the cell layer and associated dilated endoplasmic reticulum. These data suggest a requirement for FKBP65 function during embryonic connective tissue development in mice, but the restricted expression postnatally in bone, ligaments and tendons correlates with the bone fragility and contracture phenotype in humans.


Subject(s)
Connective Tissue/physiology , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/pathology , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Animals , Animals, Newborn , Bone and Bones/metabolism , Connective Tissue/embryology , Disease Models, Animal , Embryo, Mammalian , Genes, Lethal , Humans , Ligaments/metabolism , Mice , Mice, Inbred C57BL , Tendons/metabolism
10.
PLoS Genet ; 6(7): e1001044, 2010 Jul 29.
Article in English | MEDLINE | ID: mdl-20686661

ABSTRACT

Heme is a cofactor in proteins that function in almost all sub-cellular compartments and in many diverse biological processes. Heme is produced by a conserved biosynthetic pathway that is highly regulated to prevent the accumulation of heme--a cytotoxic, hydrophobic tetrapyrrole. Caenorhabditis elegans and related parasitic nematodes do not synthesize heme, but instead require environmental heme to grow and develop. Heme homeostasis in these auxotrophs is, therefore, regulated in accordance with available dietary heme. We have capitalized on this auxotrophy in C. elegans to study gene expression changes associated with precisely controlled dietary heme concentrations. RNA was isolated from cultures containing 4, 20, or 500 microM heme; derived cDNA probes were hybridized to Affymetrix C. elegans expression arrays. We identified 288 heme-responsive genes (hrgs) that were differentially expressed under these conditions. Of these genes, 42% had putative homologs in humans, while genomes of medically relevant heme auxotrophs revealed homologs for 12% in both Trypanosoma and Leishmania and 24% in parasitic nematodes. Depletion of each of the 288 hrgs by RNA-mediated interference (RNAi) in a transgenic heme-sensor worm strain identified six genes that regulated heme homeostasis. In addition, seven membrane-spanning transporters involved in heme uptake were identified by RNAi knockdown studies using a toxic heme analog. Comparison of genes that were positive in both of the RNAi screens resulted in the identification of three genes in common that were vital for organismal heme homeostasis in C. elegans. Collectively, our results provide a catalog of genes that are essential for metazoan heme homeostasis and demonstrate the power of C. elegans as a genetic animal model to dissect the regulatory circuits which mediate heme trafficking in both vertebrate hosts and their parasites, which depend on environmental heme for survival.


Subject(s)
Caenorhabditis elegans/genetics , Genome-Wide Association Study , Heme/administration & dosage , Homeostasis/genetics , Animals , Caenorhabditis elegans/physiology , Dose-Response Relationship, Drug , Gene Expression Profiling , Gene Expression Regulation/drug effects , Genes , Heme/pharmacology , Humans , Leishmania , Nematoda , Trypanosoma
11.
Nature ; 453(7198): 1127-31, 2008 Jun 19.
Article in English | MEDLINE | ID: mdl-18418376

ABSTRACT

Haems are metalloporphyrins that serve as prosthetic groups for various biological processes including respiration, gas sensing, xenobiotic detoxification, cell differentiation, circadian clock control, metabolic reprogramming and microRNA processing. With a few exceptions, haem is synthesized by a multistep biosynthetic pathway comprising defined intermediates that are highly conserved throughout evolution. Despite our extensive knowledge of haem biosynthesis and degradation, the cellular pathways and molecules that mediate intracellular haem trafficking are unknown. The experimental setback in identifying haem trafficking pathways has been the inability to dissociate the highly regulated cellular synthesis and degradation of haem from intracellular trafficking events. Caenorhabditis elegans and related helminths are natural haem auxotrophs that acquire environmental haem for incorporation into haemoproteins, which have vertebrate orthologues. Here we show, by exploiting this auxotrophy to identify HRG-1 proteins in C. elegans, that these proteins are essential for haem homeostasis and normal development in worms and vertebrates. Depletion of hrg-1, or its paralogue hrg-4, in worms results in the disruption of organismal haem sensing and an abnormal response to haem analogues. HRG-1 and HRG-4 are previously unknown transmembrane proteins, which reside in distinct intracellular compartments. Transient knockdown of hrg-1 in zebrafish leads to hydrocephalus, yolk tube malformations and, most strikingly, profound defects in erythropoiesis-phenotypes that are fully rescued by worm HRG-1. Human and worm proteins localize together, and bind and transport haem, thus establishing an evolutionarily conserved function for HRG-1. These findings reveal conserved pathways for cellular haem trafficking in animals that define the model for eukaryotic haem transport. Thus, uncovering the mechanisms of haem transport in C. elegans may provide insights into human disorders of haem metabolism and reveal new drug targets for developing anthelminthics to combat worm infestations.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Heme/metabolism , Hemeproteins/metabolism , Homeostasis , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Biological Transport/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cell Line , Erythropoiesis , Heme/pharmacology , Hemeproteins/genetics , Humans , Metalloporphyrins/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...