Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Environ Res ; 203: 111779, 2022 01.
Article in English | MEDLINE | ID: mdl-34339700

ABSTRACT

The epidemic of chronic kidney disease of unknown etiology (CKDu) that contributes significantly to morbidity and mortality rates among dry-zonal farming communities has become a public health priority in Sri Lanka. Though a large number of hypotheses were introduced as causative factors, none of them have been confirmed so far. As drinking water quality is among the most suspected causative factors for the emergence of CKDu, a detailed hydro-geochemical investigation was carried out concurrently with the population screening in the Monaragala district of Sri Lanka where high incidences of CKDu are reported. A population screening was performed selecting 46,754 people using both dipstick proteinuria test and Albumin-Creatinine Ratio (ACR). The results revealed that the disease prevalence is about 6.7 % in the district. A total of 60 groundwater samples, 30 each, were collected from CKDu-prevalent locations and control locations where there are no CKDu cases reported. The samples were analyzed to identify any possible linkage between water quality and disease prevalence. Concentrations of hardness, F-, Na+, and Mg2+ in groundwater revealed a statistically significant difference between CKDu and control wells at a confident level of p = 0.05. The study revealed that alkali (Na++K+) and alkaline earth cations (Mg2+, Ca2+, Sr2+, Ba2+) were relatively higher in drinking water sources used by CKDu patients, compared to the well waters used by healthy individuals. Nearly 87 % of the wells used by CKDu cases showed higher fluoride levels that exceed the threshold level (1.0 mg L-1). Contents of nephrotoxic trace elements such as As, Cd, and Pb were found to be comparable in both types of wells and were well below the WHO permissible levels, thus negating their prime influence on the CKDu prevalence. It is obtrusive that the elevated fluoride levels together with water hardness associated with higher Mg2+ levels have a possible relation with CKDu and may influence the disease progression.


Subject(s)
Drinking Water , Renal Insufficiency, Chronic , Fluorides/analysis , Fluorides/toxicity , Hardness , Humans , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/epidemiology , Sri Lanka/epidemiology
2.
Biomed Res Int ; 2021: 6657482, 2021.
Article in English | MEDLINE | ID: mdl-34046500

ABSTRACT

This paper describes a convenient and straightforward method developed to extract keratin particles (KPs) from human hair. It also involves their characterization by several methods and encapsulation of the anticancer drug Paclitaxel (Taxol) within them, aiming for targeted delivery to cancerous sites and slow release at their vicinity. The KPs obtained were in micrometer in size. They are capable of encapsulating Taxol within them with a high encapsulation efficiency of 56% and a drug loading capacity of 2.360 g of Taxol per g keratin. As revealed by the SEM elemental analysis, KPs do not contain any toxic metal ion, and hence, they pose no toxicity to human cells. The pH-dependent release kinetics of the drug from KPs indicates that the drug is released faster when the pH of the solution is increased in the 5.0 to 7.0 pH range. The release kinetics obtained is impressive, and once targeted to the cancerous sites, using cancer directing agents, such as folic acid; a glutamate urea ligand known as DUPA; aminopeptidase N, also known as CD13; and FAP-α-targeting agents, the slow release of the drug is expected to destroy only the cancerous cells. The Noyes-Whitney dissolution model was used to analyze the release behavior of Taxol from KPs, which shows excellent fitting with experimental data. The pH dependence of drug release from keratin is also explained using the 3-D structures and keratin stability at different pH values.


Subject(s)
Drug Carriers/chemistry , Hair/chemistry , Keratins/chemistry , Paclitaxel/chemistry , Paclitaxel/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Drug Delivery Systems , Drug Liberation , Folic Acid/chemistry , Humans , Hydrogen-Ion Concentration , Particle Size , Solubility
3.
RSC Adv ; 11(15): 8857-8866, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-35423367

ABSTRACT

We report the larvicidal effects of four different morphologies of zinc oxide nanoparticles (ZnO NPs) [star-shaped (S), needle-like (N), plate-like (P) and cubical (C)] on larvae of Aedes albopictus and Anopheles vagus; the mosquitoes causing dengue fever and malaria, respectively. The nanoparticles were characterized by several analytical techniques, and their sizes and shapes were determined. Second instar larvae of the two types of mosquitoes were exposed to several concentrations of nanoparticles (25 mg L-1, 50 mg L-1, 75 mg L-1, 100 mg L-1) at 25 ± 2 °C and 84 ± 5% R.H, separately, for each morphology. Larval mortality was reported at 24 h intervals up to 21 days. The resulting LC50 for Aedes albopictus were, respectively, 38.90 mg L-1, 47.53 mg L-1, 68.38 mg L-1, 50.24 mg L-1 for S-, N-, P- and C-shaped nanoparticles. The LC50 of Anopheles vagus is lower (LC50 4.78 mg L-1, 6.51 mg L-1, 13.64 mg L-1, 10.47 mg L -1 ), respectively, for S-, N-, P- and C-shaped nanoparticles indicating that the nanoparticles are more toxic to Anopheles vagus larvae. The highest larvicidal effect was obtained from star-shaped nanoparticles [Aedes albopictus (38.90 mg L-1) on Anopheles vagus (4.78 mg L-1)], and the lowest was shown by the plate-like nanoparticles [Aedes albopictus (68.38 mg L-1), Anopheles vagus (13.64 mg L-1)]. The rate of development of surviving mosquito larvae was retarded when exposed to ZnO nanoparticles suggesting the possibility for these nanoparticles to kill and delay the growth of Aedes albopictus and Anopheles vagus larvae.

4.
Materials (Basel) ; 12(13)2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31247886

ABSTRACT

This study focuses on employing cuprous iodide (CuI) as a hole-transporting material (HTM) in fabricating highly efficient perovskite solar cells (PSCs). The PSCs were made in air with either CuI or 2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD) as HTMs. A simple and novel pressing method was employed for incorporating CuI powder layer between perovskite layer and Pt top-contact to fabricate devices with CuI, while spiro-OMeTAD was spin-coated between perovskite layer and thermally evaporated Au top-contact to fabricate devices with spiro-OMeTAD. Under illuminations of 100 mW/cm2 with an air mass (AM) 1.5 filter in air, the average short-circuit current density (JSC) of the CuI devices was over 24 mA/cm2, which is marginally higher than that of spiro-OMeTAD devices. Higher JSC of the CuI devices can be attributed to high hole-mobility of CuI that minimizes the electron-hole recombination. However, the average power conversion efficiency (PCE) of the CuI devices were lower than that of spiro-OMeTAD devices due to slightly lower open-circuit voltage (VOC) and fill factor (FF). This is probably due to surface roughness of CuI powder. However, optimized devices with solvent-free powder pressed CuI as HTM show a promising efficiency of over 8.0 % under illuminations of 1 sun (100 mW/cm2) with an air mass 1.5 filter in air, which is the highest among the reported efficiency values for PSCs fabricated in an open environment with CuI as HTM.

5.
R Soc Open Sci ; 6(3): 182212, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31032055

ABSTRACT

Thin films of akaganeite [FeO(OH)] nanorices deposited muscovite mica (ANPM) surfaces are synthesized using the facile urea assisted controlled self-assembly technique. The synthesized materials are characterized using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy, atomic force microscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). The prepared nanorices on mica surfaces show average particle length and width of 200 and 50 nm, respectively. Synthesized material acts as an efficient photocatalyst under UV and sunlight conditions as demonstrated by the degradation of standard methylene blue (MB) solution. The MB degradation efficiencies of the catalyst under exposure to 180 min sunlight and UV are 89% and 87.5%, respectively, which shows that the catalyst is more highly active under sunlight than under UV light. Therefore, the synthesized material is a potential green photocatalyst in efficient treatment of industrial dye effluents under direct sunlight.

6.
Nanomaterials (Basel) ; 9(2)2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30736270

ABSTRACT

Doxorubicin (DOX) is an anticancer drug commonly used in treating cancer; however, it has severe cytotoxicity effects. To overcome both the adverse effects of the drug and mineral deficiency (i.e., hypomagnesemia) experienced by cancer patients, we have developed magnesium oxide (MgO) nanoflakes as drug carriers and loaded them with DOX for use as a targeted drug delivery (TDD) system for potential application in cancer therapy. The synthesis employed herein affords pure, highly porous MgO nanoparticles that are void of the potentially harmful metal contaminants often discussed in the literature. Purposed for dual therapy, the nanoparticles exhibit an impressive 90% drug loading capacity with pH dependent drug releasing rates of 10% at pH 7.2, 50.5% at pH 5.0, and 90.2% at pH 3. Results indicate that therapy is achievable via slow diffusion where MgO nanoflakes degrade (i.e., dissolve) under acidic conditions releasing the drug and magnesium ions to the cancerous region. The TDD system therefore minimizes cytotoxicity to healthy cells while supplying magnesium ions to overcome hypomagnesemia.

7.
Nanoscale Adv ; 1(2): 481-485, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-36132265

ABSTRACT

Sunlight active U3O8@ZnO nanocomposite photocatalyst has been synthesized for the first time using co-precipitation method. The synthesized composite has a particle size ranging from 18 nm to 30 nm with band gap energy of 2.9 eV. The composite photocatalyst is capable of degrading methylene blue completely within 30 min under sunlight irradiation. Therefore, this superfast efficient sunlight-active photocatalyst is very useful in industrial organic waste water treatment.

8.
Nanoscale Adv ; 1(1): 86-88, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-36132442

ABSTRACT

Hydroxyapatite/poly(methyl methacrylate) (HA-PMMA) nanocomposites are extensively used in biomedical fields. Therefore, the design and development of low-cost and industrially viable novel methods are essential to synthesize HA-PMMA nanoparticles. In this letter, we report such an economical, simple and industrially applicable novel method to synthesize nanosized HA-PMMA composite particles using extensively distributed dolomite.

9.
RSC Adv ; 8(55): 31406-31413, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-35548206

ABSTRACT

Mechanically robust, durable, fluorine-free superhydrophobic and UV shielding surfaces are fabricated on polyester umbrella canopy fabrics by self-assembly of stearic acid on zinc oxide (ZnO) nanoarchitectures on polyester fabrics. Drawbacks of conventional umbrella canopies including rain water penetration through the canopy during heavy rains, wet canopies taking too long to dry, and limited blockage of harmful UV radiation have been overcome with the surface modified canopy fabrics in the present study. Herein, in the typical synthesis, the polyester fabric is dipped in Zn(NO3)2 : hexamethylenetetraamine (HMT), at 1 : 1 molar ratio solution and heated at 100 °C for 2 h to grow ZnO nanoarchitectures on the fabric surface. Stearic acid is allowed to self-assemble by dipping the fabric in 1 g dm-3 stearic acid solution. The modified fabrics are characterized using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray fluorescence spectroscopic techniques. The modified fabrics show superhydrophobicity characterized by water contact angles over 150° with the optimum analyzed conditions. The superhydrophobic layer formed on the fabric is resistant to acid rain and stayed durable throughout 50 abrasion cycles and under 1.5 h strong surfactant washing. The developed method is useful to fabricate a smart umbrella canopy with acid rain resistant, durable, robust superhydrophobic and UV blocking properties.

10.
Mater Sci Eng C Mater Biol Appl ; 71: 206-213, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27987700

ABSTRACT

There is a conspicuous progress in increasing anticancer drug delivery through the utilization of nanoparticles (NPs) as drug delivery agents. Hydroxyapatite (HA) gives improved clinical effectiveness of drugs by reducing systemic toxicity and broadening the spectrum of drug delivery since it is biocompatible and it can be targeted towards tumor cells. Herein, investigation of the potential of enhancing controlled drug release of the template model drug, copper bis-(8-hydroxyquinoline), by encapsulating it in hollow hydroxyapatite nano-carriers, is presented. Hydroxyapatite nanoparticles are synthesized by following four different routes to optimize its efficacy of drug loading. Copper bis-(8-hydroxyquinoline) is encapsulated by Method (a) which was effected by stirring the model drug and porous HA NPs in colloidal solution and Method (b) which was done during synthesis of hydroxyapatite nanoparticles in a solution of the model drug. In synthesizing nanoporous HA NPs, calcium carbonate is used as a template to create voids in HA. In each method, Ca/P ratio was ensured to be kept at 1.67:1. Appealing results are reported for the encapsulated product which was prepared by Method (a2). Method (a) was done at three different molar ratios of PO43-:CO32- and best result was obtained for that utilized 2.003:1 molar ratio (Method (a2).). It produced 98.67% of encapsulation efficiency and 2.9522mg/g of drug loading capacity. Release kinetics was studied at a range of pH values; the lower the pH of the medium the higher is the drug release. For instance, when considering the product which exhibited high encapsulation efficiency and high drug loading capacity, at pH3.5 during the first 8h it elicited about 13% of release, at pH5.0 about 8% release while at pH6.0 it was just 2.5%. During the 24-hour span, pH3.5 exhibited about 23.8%, at pH5.0 approximately 9% with an increasing trend of release and at pH6.0 showed a value just above 2.5%. As such, acidity of the cancerous cells can be made use to increase the drug slow-release kinetics at the vicinity of the cancer cells.


Subject(s)
Antineoplastic Agents , Durapatite , Hydroxyquinolines , Organometallic Compounds , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Durapatite/chemistry , Durapatite/pharmacokinetics , Durapatite/pharmacology , Humans , Hydroxyquinolines/chemistry , Hydroxyquinolines/pharmacokinetics , Hydroxyquinolines/pharmacology , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacokinetics , Organometallic Compounds/pharmacology
11.
Mater Sci Eng C Mater Biol Appl ; 63: 172-84, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27040209

ABSTRACT

Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value.


Subject(s)
Coated Materials, Biocompatible/chemistry , Durapatite/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Cell Line , Cell Survival/drug effects , Coated Materials, Biocompatible/pharmacology , Humans , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Temperature , X-Ray Diffraction
12.
Mater Sci Eng C Mater Biol Appl ; 42: 83-90, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25063096

ABSTRACT

Synthetic hydroxyapatite (HA) nanoparticles, that mimic natural HA, are widely used as biocompatible coatings on prostheses to repair and substitute human bones. In this study, HA nanoparticles are prepared by precipitating them from a precursor solution containing calcium sucrate and ammonium dihydrogen orthophosphate, at a Ca/P mole ratio of 1.67:1, at temperatures, ranging from 10°C to 95°C. A set of products, prepared at different temperatures, is analyzed for their crystallinity, crystallite size, morphology, thermal stability and composition, by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopic techniques, while the other set is analyzed after calcining the respective products, soon after their synthesis, for 3h, at 700°C. The as-prepared products, after 2h of drying, without any calcination, are not crystalline, but they grow very slowly into needle-like morphologies, as they are ripened with time. The percentage crystallinity of the final products increases from 15% to 52%, with increasing the preparative temperature. The calcined samples always produce spherical nanoparticles of essentially the same diameter, between 90 nm and 100 nm, which does not change due to aging and preparative temperatures. Therefore, the same method can be utilized to synthesize both spherical and needle-like nanoparticles of hydroxyapatite, with well-defined sizes and shapes. The ability to use readily available cheap raw materials, for the synthesis of such well-defined crystallites of hydroxyapatite, is an added advantage of this method, which may be explored further for the scaling up of the procedures to suit to industrial scale synthesis of such hydroxyapatite nanoparticles.


Subject(s)
Durapatite/chemistry , Nanoparticles/chemistry , Calcium , Nanoparticles/ultrastructure , Particle Size , Spectroscopy, Fourier Transform Infrared , Temperature , X-Ray Diffraction
13.
Chem Commun (Camb) ; 46(19): 3360-2, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20442901

ABSTRACT

CuSCN with enhanced p-type conductivity was prepared by replacing some of the cuprous sites by triethylamine coordinated Cu(I) with concomitant (SCN)(2) doping to introduce more holes. A compound Cu(5)[(C(2)H(5))(3)N](3)(SCN)(11) was isolated and well characterized. A 41% enhancement of energy conversion efficiency of the TiO(2)/N719/modified CuSCN cell from the best reported value and more than a factor of ten from bare CuSCN was achieved.

14.
Environ Sci Technol ; 43(1): 176-80, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19209603

ABSTRACT

Reactive oxygen species (ROS), namely superoxide anion (O2*-, singlet oxygen (1O2), are potentially important substances for the mineralization of toxic organic molecules. The utility of hematoporphyrindihydrochloride (HPDHC) as a photosensitizer to generate ROS and their subsequent role in the destruction of magenta (MaG) in aqueous media is the main concern. The light irradiation of oxygenated aqueous solution of HPDHC and 1.5 x 10(-5) mol dm(-3) MaG at pH 3 yielded micromolar levels of NO3(-) ions. A higher rate of photodegradation (1.02 mol dm(-3) min(-1)) at pH 3 was observed compared to that of at pH 6 (0.68 mol dm(-3) min(-1)). Experiments were carried out in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as singlet oxygen (1O2) quencher and bezoquinone (BQ) as superoxide anion (O2*-) quencher. Only BQ was able to stop photodegradation suggesting that the photooxidation of MaG is mainly caused by O2*-, which is generated by an electron transfer from the excited HPDHC to ground-state oxygen. The presence of iron(II) at pH 3.0, compared to that without iron(II), showed a higher rate of photodegradation due to the formation of extremely reactive hydroxyl radicals (HO*) upon dismutation of O2*- anion through H2O2 intermediate. The formation of O2*-, H2O2, and HO* is therefore evident, which may act as active sites for subsequent photodegradation of MaG.


Subject(s)
Oxygen/chemistry , Photolysis , Photosensitizing Agents/chemistry , Rosaniline Dyes/chemistry , Rosaniline Dyes/radiation effects , Benzoquinones/chemistry , Hydrogen-Ion Concentration/radiation effects , Iron/chemistry , Kinetics , Light , Nitrates/chemistry , Oxidation-Reduction/radiation effects , Photobleaching/radiation effects , Photolysis/radiation effects , Solutions , Spectrum Analysis , Superoxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...