Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem Toxicol ; 182: 114169, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37940032

ABSTRACT

This study assesses the risk due to Emerging Contaminants (ECs), present in Indian rivers - Ganga (650 million inhabitants), Yamuna (57 million inhabitants), and Musi (7,500,000 inhabitants), 13 ECs in total, have been used for risk assessment studies. Their concentrations (e.g., Fluconazole: 236950 µg/l, Ciprofloxacin: 31000 µg/l, Caffeine: 21.57 µg/l, etc.) were higher than the threshold concentrations for safe consumption (e.g. Fluconazole allowable level is 3.8 µg/l, and Ciprofloxacin allowable level is 0.51 µg/l). Three different pathways of emerging contaminants (ECs) transfer (oral water ingestion, oral fish ingestion, and dermal water contact) have been considered and the study is carried out in 2 ways: (i) deterministic and (ii) probabilistic approaches (using Monte Carlo iterative methods with 10000 simulations) with the aid of a software - Risk (version 7.5). The risk value, quantified by Hazard Quotient (HQ) is higher than the allowable limit of 1 for several compounds in the three rivers like Fluconazole (HQ = 18276.713), Ciprofloxacin (HQ = 278.675), Voriconazole (HQ = 14.578), Cetirizine (HQ = 1006.917), Moxifloxacin (HQ = 8.076), Caffeine (HQ = 55.150), and Ibuprofen (HQ = 9.503). Results show that Fluconazole and Caffeine pose the maximum risk in the rivers via the "oral pathway" that allows maximum transfer of the ECs present in the river (93% and 82% contribution to total risk). The risk values vary from nearly 25 times to 19000 times the United States Environmental Protection Agency (USEPA) threshold limit of 1 (e.g., Caffeine Infant Risk = 25.990 and Fluconazole Adult Risk = 18276.713). The most susceptible age group, from this study, is "Adults" (19-70 years old), who stand the chance of experiencing the adverse health hazards associated with prolonged over-exposure to the ECs present in the river waters. Musi has the maximum concentration of pollutants and requires immediate remediation measures. Further, both methods indicate that nearly 60-70% of the population in all the three study areas are at risk of developing health hazards associated with over-exposure to ECs regularly, making the areas inhabitable.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Animals , Adult , Humans , Young Adult , Middle Aged , Aged , Environmental Monitoring/methods , Rivers , Caffeine/adverse effects , Fluconazole/adverse effects , Water , Risk Assessment , Water Pollutants, Chemical/analysis , Ciprofloxacin
2.
Environ Sci Pollut Res Int ; 28(29): 39826-39839, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33768453

ABSTRACT

This study presents deterministic and probabilistic human health risk assessment using Monte Carlo simulations on exposure to an Indian river, Kaveri, which has been contaminated by non-steroidal anti-inflammatory drugs (NSAIDs). The NSAIDs of concern are naproxen, ibuprofen, aspirin, ketoprofen, and diclofenac. We have considered three exposure scenarios (water ingestion, dermal exposure, and fish ingestion) for four different age groups (0-5, 6-10, 11-18, and 19-70 years). Deterministic risk assessment revealed teenagers to be the most sensitive receptors and water ingestion to be the most crucial pathway contributing to maximum health risk (79 to 86%). Based on the results of Monte Carlo simulations, it was found that the probability of exceeding the deterministic mean risks ranged from 17 to 39% for different exposure routes. High end risk estimates such as 95th percentiles and maximum values of HQ for the entire population did not exceed the USEPA allowable risk. This implies that the NSAIDs at the detected concentrations in the Kaveri river may not pose adverse health effects even in the worst-case scenario. Among the five NSAIDs, diclofenac was found to be the major contributor for health risk. Moreover, the concentration of diclofenac was just one order less than the estimated site-specific threshold concentrations. From sensitivity analysis, the most and the least impactful parameters were found to be water ingestion rate and fish ingestion rate respectively.


Subject(s)
Pharmaceutical Preparations , Rivers , Adolescent , Animals , Anti-Inflammatory Agents, Non-Steroidal , Child, Preschool , Diclofenac/adverse effects , Humans , Infant , Infant, Newborn , Naproxen/adverse effects , Risk Assessment
3.
Environ Pollut ; 265(Pt B): 114814, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32505959

ABSTRACT

The aquifer in Tondiarpet, Chennai, had been severely contaminated with petroleum fuels due to an underground pipeline leakage. Groundwater samples were analyzed quarterly for priority pollutants such as benzene, toluene, ethylbenzene, xylenes, and naphthalene (BTEXN) using purge and trap gas chromatography and mass spectrometer from 2016 to 2018. The maximum concentrations of BTEXN in groundwater at the site were found to be greater than the permissible limits significantly. Among the five sampling locations (MW1, MW2, MW3, MW4, and MW5), mean BTEXN levels were found to be higher near MW2, confirming the source location of petroleum leakage. Human health risk assessment was carried out using deterministic and probabilistic methods for exposure to BTEXN by oral and dermal exposure pathways. Risk analysis indicated that mean cancer and non-cancer risks were many times higher than the allowable limits of 1E-06 and 1 respectively in all age groups (children, teens, and adults), implying the adverse health effects. Oral exposure is predominately contributing (60-80%) to the total health risk in comparison to the dermal exposure route. Variability and uncertainty were addressed using the Monte Carlo simulations and the resultant minimum, maximum, 5th, 95th, and mean percentile risks were predicted. Under the random exposure conditions to BTEXN, it was estimated that the risk would become unacceptable for >98.7% of the exposed population. Based on the sensitivity analysis, exposure duration, and ingestion rate are the crucial variables contributing significantly to the health risk. As part of the risk management, preliminary remediation goals for the study site were estimated, which require >99% removal of the BTEXN contamination for risk-free exposures. It is suggested that the residents of Tondiarpet shouldn't utilize the contaminated groundwater mainly for oral ingestion to lower the cancer incidence related to exposure to BTEXN.


Subject(s)
Groundwater , Water Pollutants, Chemical/analysis , Adolescent , Adult , Benzene , Benzene Derivatives , Child , Cities , Humans , India , Risk Assessment , Toluene , Xylenes
4.
J Environ Manage ; 266: 110469, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32314741

ABSTRACT

This study mainly focuses on the efficiency of anodic oxidation process (Ti/Sb-SnO2/PbO2 as anode and stainless steel as the cathode) in treating two different streams of urban wastewater, one from the influent of sequence batch reactor (WW1) and other from the effluent of constructed wetland (WW2). The effect of different operational parameters such as current density, hydraulic retention time, exposed electrode surface area, phosphorous, ammonia-nitrogen, nitrates, and coliform bacteria was studied. For an optimized current density of 30 mA/cm2 and an electrode surface area of 30 cm2, almost complete removal of COD and ammonia-nitrogen were achieved with both wastewaters (WW1 & WW2), while in case of phosphorous, 50% and 98% removal efficiencies were observed. Electrode deposition was analyzed using SEM-EDS and XRD, which confirms the presence of calcium and magnesium phosphates on the surface on the anode, which attributes to the phosphate removal. Electrochemical disinfection studies showed that complete inactivation of bacteria takes place within 30 min for WW1 and 60 min for WW2, and the cell morphological changes were studied using SEM analysis. Degradation of different micropollutants present in the wastewaters was evaluated with the aid of GC-MS. ICP - MS analysis confirmed that there was no leaching of lead from the anode surface, and the lead which is already present in the wastewater gets reduced to a permissible level, which further increases the treatment efficiency. Hence cleaner and comprehensive treatment of real urban wastewaters through anodic oxidation process was successfully demonstrated in this work.


Subject(s)
Wastewater , Water Pollutants, Chemical , Electrodes , Oxidation-Reduction , Titanium
5.
J Environ Manage ; 205: 183-191, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28985597

ABSTRACT

Underground pipelines are frequently used to transport petroleum fuels, through industrial as well as residential zones. Chennai is one of the four largest metropolitan cities of India. The region of interest in this study is located in the northern part of the Chennai. Ground water of this area was contaminated with polyaromatic hydrocarbons (PAHs) from the leaking oil storage tanks and pipe lines. Health risk assessment was conducted for exposure to PAHs in the ground water using incremental life time cancer risk (ILCR) models coupled with benzo[a]pyrene toxic equivalent method. The exposure pathways considered in this study were direct water ingestion and dermal contact under residential scenario. Exposure input parameters were transformed to statistical parameters using lognormal/uniform distributions and resultant probabilities of cancer risk were estimated by performing Monte Carlo simulations. Preliminary remediation goals were predicted using the combination of the cancer risk models of all the exposure routes with the consideration of high-safety risk of 1-in-1 million. Results showed that the cancer risk is predominantly contributed (greater than 98%) by dermal exposure than the oral in both adults and children. The total ILCR is found to be greater than a low safety risk of 1-in-10,000 with higher probability percentages (>90%). The 95th percentile values of the risk were presented in order to address the need for remediation. Appropriate remedial and treatment methods for the subject site were proposed. The results of the study will be useful for the regulatory boards and policy makers in India in understanding the actual impact of the contamination on receptors, setting up final remediation goals and deciding on a specific remedial method.


Subject(s)
Groundwater , Monte Carlo Method , Polycyclic Aromatic Hydrocarbons , Risk Assessment , Adult , Child , Cities , Humans , India , Petroleum
6.
Environ Monit Assess ; 189(4): 148, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28275982

ABSTRACT

Incidences of leakages of chemicals from underground oil storage tanks or oil-carrying pipelines have posed huge threat to the coastal aquifers around the world. One such leak was recently identified and notified by the people of Tondiarpet, Chennai, India. The assessment of the contamination level was done by obtaining electrical resistivity maps of the subsurface, drilling of 20 new borewells for soil and water analysis, and testing the water quality of 30 existing borewells. Samples were collected from the borewells, and observations were made that included parameters such as odor, moisture, contamination characteristics, lithology, groundwater level, thickness of the free product that are used to demarcate the extent of soil, and water contamination. Furthermore, a multigas detector was used to detect hydrocarbon presence as soil vapor. Moreover, to capture the transport of dissolved hydrocarbons, 10 samples were collected in the periphery of the study area and were analyzed for the presence of petroleum hydrocarbon and polyaromatic hydrocarbon. Analysis of the data indicated the presence of free-phase hydrocarbon in soil and groundwater close to the junction of Thiruvottiyur high (TH) road (TH) and Varadaja Perumal Koil (VPK) street. Although the contaminant plume is confined to a limited area, it has spread more to the southern and eastern side of the pipeline possibly due to continuous abstraction of groundwater by residential apartments. After cutting a trench along the VPK street and plotting of the plume delineation map, observations indicated that the source of the hydrocarbon leak is present in VPK street close to TH road. A multipronged strategy was suggested targeting the remediation of oil in various phases.


Subject(s)
Environmental Monitoring , Groundwater/chemistry , Petroleum Pollution/analysis , Petroleum/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Groundwater/analysis , Hydrocarbons/analysis , India , Soil , Water Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...