Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Food Sci Biotechnol ; 33(8): 1759-1788, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752115

ABSTRACT

Poly(lactic acid) (PLA) stands as a compelling alternative to conventional plastic-based packaging, signifying a notable shift toward sustainable material utilization. This comprehensive analysis illuminates the manifold applications of PLA composites within the realm of the food industry, emphasizing its pivotal role in food packaging and preservation. Noteworthy attributes of PLA composites with phenolic active compounds (phenolic acid and aldehyde, terpenes, carotenoid, and so on) include robust antimicrobial and antioxidant properties, significantly enhancing its capability to bolster adherence to stringent food safety standards. The incorporation of microbial and synthetic biopolymers, polysaccharides, oligosaccharides, oils, proteins and peptides to PLA in packaging solutions arises from its inherent non-toxicity and outstanding mechanical as well as thermal resilience. Functioning as a proficient film producer, PLA constructs an ideal preservation environment by merging optical and permeability traits. Esteemed as a pioneer in environmentally mindful packaging, PLA diminishes ecological footprints owing to its innate biodegradability. Primarily, the adoption of PLA extends the shelf life of products and encourages an eco-centric approach, marking a significant stride toward the food industry's embrace of sustainable packaging methodologies.

2.
Food Sci Biotechnol ; 33(5): 1019-1036, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38440686

ABSTRACT

Vanillin, a highly regarded flavor compound, has earned widespread recognition for its natural and aromatic qualities, piquing substantial interest in the scientific community. This comprehensive review delves deeply into the intricate world of vanillin synthesis, encompassing a wide spectrum of methodologies, including enzymatic, microbial, and immobilized systems. This investigation provides a thorough analysis of the precursors of vanillin and also offers a comprehensive overview of its transformation through these diverse processes, making it an invaluable resource for researchers and enthusiasts alike. The elucidation of different substrates such as ferulic acid, eugenol, veratraldehyde, vanillic acid, glucovanillin, and C6-C3 phenylpropanoids adds a layer of depth and insight to the understanding of vanillin synthesis. Moreover, this comprehensive review explores the multifaceted applications of vanillin within the food industry. While commonly known as a flavoring agent, vanillin transcends this role by finding extensive use in food preservation and food packaging. The review meticulously examines the remarkable preservative properties of vanillin, providing a profound understanding of its crucial role in the culinary and food science sectors, thus making it an indispensable reference for professionals and researchers in these domains.

3.
Food Sci Biotechnol ; 33(2): 245-273, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38222912

ABSTRACT

Microbial biosurfactants surpass synthetic alternatives due to their biodegradability, minimal toxicity, selective properties, and efficacy across a wide range of environmental conditions. Owing to their remarkable advantages, biosurfactants employability as effective emulsifiers and stabilizers, antimicrobial and antioxidant attributes, rendering them for integration into food preservation, processing, formulations, and packaging. The biosurfactants can also be derived from various types of food wastes. Biosurfactants are harnessed across multiple sectors within the food industry, ranging from condiments (mayonnaise) to baked goods (bread, muffins, loaves, cookies, and dough), and extending into the dairy industry (cheese, yogurt, and fermented milk). Additionally, their impact reaches the beverage industry, poultry feed, seafood products like tuna, as well as meat processing and instant foods, collectively redefining each sector's landscape. This review thoroughly explores the multifaceted utilization of biosurfactants within the food industry as emulsifiers, antimicrobial, antiadhesive, antibiofilm agents, shelf-life enhancers, texture modifiers, and foaming agents.

4.
Food Sci Biotechnol ; 32(10): 1337-1350, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37457405

ABSTRACT

Despite centuries of developing strategies to prevent food-associated illnesses, food safety remains a significant concern, even with multiple technological advancements. Consumers increasingly seek less processed and naturally preserved food options. One promising approach is food biopreservation, which uses natural antimicrobials found in food with a long history of safe consumption and can help reduce the reliance on chemically synthesized food preservatives. The hurdle technology method that combines multiple antimicrobial strategies is often used to improve the effectiveness of food biopreservation. This review attempts to provide a research summary on the utilization of lactic acid bacteria, bacteriocins, endolysins, bacteriophages, and biopolymers helps in the improvement of the shelf-life of food and lower the risk of food-borne pathogens throughout the food supply chain. This review also aims to evaluate current technologies that successfully employ the aforementioned preservatives to address obstacles in food biopreservation.

5.
Chemosphere ; 331: 138734, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37088205

ABSTRACT

A biocatalytic membrane offers an ideal alternative to the conventional treatment process for the removal of toxic pentachlorophenol (PCP). The limelight of the study is to utilize superparamagnetic iron oxide nanoparticles (SPIONs) incorporated (poly (methyl vinyl ether-alt-maleic acid) (PMVEAMA) and poly (ether - ether) sulfone (PEES)) membrane for immobilization of laccase and its application towards the removal of PCP. In regard to immobilization of Tramates versicolor laccase onto membranes, 5 mM glutaraldehyde with 10 h cross-linking time was employed, yielding 76.92% and 77.96% activity recovery for PEES/PMVEAMA/La and PEES/PMVEAMA/SPIONs/Lac, respectively. In the context of kinetics and stability studies, the immobilized laccase on PEES/PMVEAMA/Lac membrane outperforms the free and PEES/PMVEAMA laccases. At pH 7.0, the free enzyme loses half of its activity, while the immobilized laccases maintained more than 87% of their initial activity even after 480 min. With regard to PCP removal, the removal efficiency of immobilized laccase on the membrane was more than free enzyme. With 100 ppm of PCP, immobilized laccase on PEES/PMVEAMA/SPIONs membrane at pH 4.0 and 50 °C had a removal efficacy of 61.65% in 24 h. Furthermore, to perk up the removal of PCP, the laccase-aided system with mediators was investigated. Amongst, veratryl alcohol displayed 71.04% of PCP removal using immobilized laccase. The reusability of the laccase heightened after immobilization on PEES/PMVEAMA/SPIONs portraying 62.44% of the residual activity with 39.4% of PCP removal even after five cycles. The current investigation reveals the efficacy of the mediator-aided PEES/PMVEAMA/lac membrane system towards removing PCP from the aqueous solution, which can also be proposed for a membrane bioreactor.


Subject(s)
Laccase , Pentachlorophenol , Enzymes, Immobilized , Ultrafiltration , Polymers , Hydrogen-Ion Concentration
6.
Environ Res ; 227: 115724, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36948285

ABSTRACT

Neurotoxic pesticides are a group of chemicals that pose a severe threat to both human health and the environment. These molecules are also known to accumulate in the food chain and persist in the environment, which can lead to long-term exposure and adverse effects on non-target organisms. The detrimental effects of these pesticides on neurotransmitter levels and function can lead to a range of neurological and behavioral symptoms, which are closely associated with neurodegenerative diseases. Hence, the accurate and reliable detection of these neurotoxic pesticides and associated neurotransmitters is essential for clinical applications, such as diagnosis and treatment. Over the past few decades, acetylcholinesterase (AchE) biosensors have emerged as a sensitive and reliable tool for the electrochemical detection of neurotoxic pesticides and acetylcholine. These biosensors can be tailored to utilize the high specificity and sensitivity of AchE, enabling the detection of these chemicals. Additionally, enzyme immobilization and the incorporation of nanoparticles have further improved the detection capabilities of these biosensors. AchE biosensors have shown tremendous potential in various fields, including environmental monitoring, clinical diagnosis, and pesticide residue analysis. This review summarizes the advancements in AchE biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine over the past two decades.


Subject(s)
Biosensing Techniques , Pesticide Residues , Pesticides , Humans , Pesticides/analysis , Acetylcholinesterase/analysis , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Acetylcholine/analysis , Pesticide Residues/analysis
7.
Bioresour Technol ; 377: 128958, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36965584

ABSTRACT

This study focuses on using Casuarina equisetifolia biomass for pilot-scale glucose oxidase production from Aspergillus niger and its application in the removal of trace organic contaminants (TrOCs) from municipal wastewater through the bio-Fenton oxidation. The cost of glucose oxidase was 0.005 $/U, including the optimum production parameters, 10% biomass, 7% sucrose, 1% peptone, and 3% CaCO3 at 96 h with an enzyme activity of 670 U/mL. Optimized conditions for H2O2 were 1 M glucose, 100 U/mL glucose oxidase, and 120 mins of incubation, resulting in 544.3 mg/L H2O2. Thus, H2O2 produced under these conditions lead to bio-Fenton oxidation resulting in the removal of 36-92% of nine TrOCs in municipal wastewater at pH 7.0 in 360 mins. Therefore, this work establishes the cost-effective glucose oxidase-producing H2O2 as an attractive bioremediating agent to enhance the removal of TrOCs in wastewater at neutral pH.


Subject(s)
Wastewater , Water Pollutants, Chemical , Glucose Oxidase , Biomass , Hydrogen Peroxide , Cost-Benefit Analysis , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Waste Disposal, Fluid/methods
8.
Chemosphere ; 313: 137612, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36563730

ABSTRACT

In this preset study, porous-cross-linked enzyme aggregates (CLEAs) of Pleurotus ostreatus laccase were utilized for the spontaneous decolorization and detoxification of triarylmethane and azo dyes, reactive blue 2 (RB) and malachite green (MG). The specific surface area and pore radius of the porous-CLEAs are 136.3 m2/g and 19.47 Ao, and the higher specific surface indicated greater biocatalytic efficiency, as increased mass transfer and dye interaction with the CLEAs laccase. CLEAs laccase decolorized 500 ppm of MG and RB with 98.12-58.33% efficiency after 120 min, at pH 5.0 and 50°C, without a mediator. Furthermore, the biotransformation of the MG and RB with immobilized laccase was confirmed with the help of UV-visible spectroscopy, high-performance liquid chromatography, and Fourier transform infrared spectroscopy. The reusability potential of CLEAs was assessed in batch mode for 10 cycles of dye decolorization. The decolorization activities for the immobilized laccase were 89% and 12% at the 6th cycle for MG and RB, respectively. This immobilized enzyme could effectively remove dyes from aqueous solution, and demonstrated significant detoxification in experimental plants (Triticum aestivum and Phaseolus mungo) and plant growth-promoting rhizobacteria (Azospirillum brasilense, Bacillus megaterium, Rhizobium leguminosarum, Bacillus subtilis, and Pseudomonas fluorescens). In conclusion, porous CLEAs laccase could be useful as a potential bioremediation tool for the detoxification and decolorization of dyeing wastewater in future.


Subject(s)
Laccase , Pleurotus , Laccase/chemistry , Pleurotus/metabolism , Azo Compounds/metabolism , Porosity , Coloring Agents/chemistry
9.
Environ Res ; 215(Pt 1): 114180, 2022 12.
Article in English | MEDLINE | ID: mdl-36057335

ABSTRACT

In the present study, surface-active compounds (SAC) were extracted from biosolids using an alkaline treatment process. They were tested for their remediation efficiency of crude oil-contaminated sediment soil and was compared with Triton x-100. The SAC exhibited a similar soil washing efficiency to that of the commercial Triton x-100, and under the optimized soil washing parameters, SAC exhibited a maximum of 91% total polycyclic aromatic hydrocarbons removal. Further, on analysing the toxicity of the soil residue after washing, it was observed that SAC from biosolids washed soil exhibited an average of 1.5-fold lesser toxicity compared to that of Triton x-100 on different test models-earthworm, a monocot, and dicot plants. The analysis of the key soil parameters revealed that the commercial surfactant reduced the soil organic matter and porosity by an average of 1.3-fold compared to SAC. Further, the ability of surfactants to induce toxicity was confirmed by the adsorption of the surfactants on the surface of the soil particles which was in the order of Triton x-100 > SAC. Thus, this study suggests that SAC can be applied as an effective bioremediation approach for contaminated soil for a greener and sustainable ecosystem.


Subject(s)
Petroleum , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Biosolids , Ecosystem , Octoxynol , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil , Soil Pollutants/analysis , Surface-Active Agents/analysis
10.
Environ Res ; 214(Pt 3): 114012, 2022 11.
Article in English | MEDLINE | ID: mdl-35952747

ABSTRACT

Due to stringent regulatory norms, waste processing faces confrontations and challenges in adapting technology for effective management through a convenient and economical system. At the global level, attempts are underway to achieve a green and sustainable treatment for the valorization of lignocellulosic biomass as well as organic contaminants in wastewater. Enzymatic treatment in the environmental aspect thrived on being the promising rapid strategy that appeased the aforementioned predicament. On that account, coimmobilization of various enzymes on single support enhances the catalytic activity ensuing operational stability with industrial applications. This review pivoted towards the coimmobilization of enzymes on diverse supports and their applications in biomass conversion to industrial value-added products and removal of contaminants in wastewater. The limelight of this study chronicles the unique breakthroughs in biotechnology for the production of reusable biocatalysts, which inculcating various enzymes towards the scope of environment application.


Subject(s)
Biotechnology , Wastewater , Biocatalysis , Biomass
11.
Environ Pollut ; 309: 119729, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35809710

ABSTRACT

The treatment of contaminants from lignocellulosic biorefinery effluent has recently been identified as a unique challenge. This study focuses on removing phenolic contaminants and polycyclic aromatic hydrocarbons (PAHs) from lignocellulosic biorefinery wastewater (BRW) applying a laccase-assisted approach. Cassava waste was used as a substrate to produce the maximum yield of laccase enzyme (3.9 U/g) from Pleurotus ostreatus. Among the different inducers supplemented, CuSO4 (0.5 mM) showed an eight-fold increase in enzyme production (30.8 U/g) after 240 h of incubation. The catalytic efficiency of laccase was observed as 128.7 ± 8.47 S-1mM-1 for syringaldazine oxidation at optimum pH 4.0 and 40 °C. Laccase activity was completely inhibited by lead (II) ion, mercury (II) ion, sodium dodecyl sulphate, sodium azide and 1,4 dithiothretiol and induced significantly by manganese (II) ion and rhamnolipid. After treating BRW with laccase, the concentrations of PAHs and phenolic contaminants of 1144 µg/L and 46160 µg/L were reduced to 96 µg/L and 16100 µg/L, respectively. The ability of laccase to effectively degrade PAHs in the presence of different phenolic compounds implies that phenolic contaminants may play a role in PAHs degradation. After 240 h, organic contaminants were removed from BRW in the following order: phenol >2,4-dinitrophenol > 2-methyl-4,6-dinitrophenol > 2,3,4,6-tetrachlorophenol > acenaphthene > fluorine > phenanthrene > fluoranthene > pyrene > anthracene > chrysene > naphthalene > benzo(a)anthracene > benzo(a)pyrene > benzo(b)fluoranthene > pentachlorophenol > indeno(1,2,3-cd)pyrene > benzo(j) fluoranthene > benzo[k]fluoranthène. The multiple contaminant remediation from the BRW by enzymatic method, clearly suggests that the laccase can be used as a bioremediation tool for the treatment of wastewater from various industries.


Subject(s)
Manihot , Pleurotus , Polycyclic Aromatic Hydrocarbons , Laccase/metabolism , Lignin , Manihot/metabolism , Phenols/metabolism , Pleurotus/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Wastewater
12.
Environ Res ; 209: 112882, 2022 06.
Article in English | MEDLINE | ID: mdl-35131326

ABSTRACT

The novelty of this study deals with the biocatalytic treatment of trace organic contaminants (TrOCs) from municipal wastewater by insolubilized laccase. Laccase from Trametes versicolor was aggregated by three-phase partitioning technique followed by cross-linking with glutaraldehyde to produce insolubilized laccase as cross-linked enzyme aggregates (CLEAs). The optimal conditions for CLEAs preparation include ammonium sulphate concentration of 83% (w/v), crude to t-butanol ratio of 1.00: 1.05 (v/v), pH 5.3, and glutaraldehyde concentration of 20 mM obtained via statistical design. The efficiency of insolubilization of the CLEAs laccase based on the kcat/km ratio was approximately 4.8-fold greater than that of free laccase. The developed CLEAs showed greater resistance to product inhibition mediated by ABTS than the free enzyme and exhibited excellent catalytic activity even after the tenth successive cycle. Further, free laccase and the synthesized CLEAs laccase were utilized to treat five analgesics, two NSAIDS, three antibiotics, two antilipemics, and three pesticides in the municipal wastewater. Under the batch process with operating conditions of pH 7.0 and 20 °C, 1000 U/L of CLEAs, laccase removed 11 TrOCs in the range of about 20-99%. However, the inactivated CLEAs only adsorbed 2-25% of TrOCs. It was observed that acetaminophen, mefenamic acid, trimethoprim, and metolachlor depicted almost complete removal with CLEAs laccase. The performance of CLEAs laccase in a perfusion basket reactor was tested for the removal of TrOCs from municipal wastewater.


Subject(s)
Laccase , Wastewater , Enzymes, Immobilized , Trametes
13.
Chemosphere ; 287(Pt 1): 131958, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34454222

ABSTRACT

Remediation of emerging pharmaceutically active compounds (PhACs) as micropollutants in wastewater is of foremost importance as they can cause extremely detrimental effects on life upon bioaccumulation and generation of drug-resistance microorganisms. Presently used physicochemical treatments, such as electrochemical oxidation, nanofiltration and reverse osmosis, are not feasible owing to high operating costs, incomplete removal of contaminants along with toxic by-products formation. Adsorption with the utilization of facile and efficient nanoparticulate adsorbents having distinctive properties of high surface area, excellent adsorption capacity, ability to undergo surface engineering and good regeneration displays great potential in this aspect along with the incorporation of nanotechnology for effective treatment. The application of such nanosorbents provides optimal performance under a wide range of physicochemical conditions, decreased secondary pollution with reduced mechanical stress along with excellent organic compound sequestration capacity, which in turn improves the quality of potable water in a sustainable way compared to current treatments. The present review intends to consolidate the range of factors that affect the process of adsorption of different PhACs on to various nanosorbents and also highlights the adsorption mechanism aiding in the retrieval.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Water Purification , Adsorption , Wastewater/analysis , Water Pollutants, Chemical/analysis
14.
Sci Rep ; 10(1): 13356, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32770127

ABSTRACT

The present study report for the first time on the one-pot production and purification of fibrinolytic protease from Bacillus cereus by extractive fermentation using natural deep eutectic solvents (NADES). Cheese whey was chosen as a sustainable low-cost production alternative yielding a significantly high amount of protease (185.7 U/mg). Five natural deep eutectic solvents with menthol as hydrogen bond donor and sugar molecules as corresponding hydrogen bond acceptors were synthesized and their association was confirmed with H1 NMR. Thermophysical investigation of the synthetic NADES was accomplished as a function of temperature to define their extraction ability. Response surface methodology based optimization of concentration of NADES (77.5% w/w), Na2SO4 (14% w/v) and cheese whey (1% w/w) were accomplished for extractive fermentation. Further, preparative purification using size exclusion chromatography was used to quantify the amount of enzyme obtained in the extraction phase (190 U/ml). On subsequent purification with an anion exchange column, the maximum purity fold (21.2) with enzyme activity (2,607.8 U/ml) was attained. The optimal pH (8.0), temperature (50 °C) were determined and the in-vitro fibrinolytic activity has been confirmed using a fibrin plate assay.


Subject(s)
Bacillus cereus/metabolism , Fibrinolytic Agents/metabolism , Peptide Hydrolases/metabolism , Chromatography, Ion Exchange , Electrophoresis, Polyacrylamide Gel , Fermentation , Fibrinolysis , Fibrinolytic Agents/isolation & purification , Humans , Magnetic Resonance Spectroscopy , Peptide Hydrolases/isolation & purification , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...