Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(6): 106788, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37235049

ABSTRACT

Mitochondria produce reactive oxygen species (ROS), which function in signal transduction. Mitochondrial dynamics, encompassing morphological shifts between fission and fusion, can directly impact ROS levels in cancer cells. In this study, we identified an ROS-dependent mechanism for how enhanced mitochondrial fission inhibits triple negative breast cancer (TNBC) cell migration. We found that enforcing mitochondrial fission in TNBC resulted in an increase in intracellular ROS levels and reduced cell migration and the formation of actin-rich migratory structures. Consistent with mitochondrial fission, increasing ROS levels in cells inhibited cell migration. Conversely, reducing ROS levels with either a global or mitochondrially targeted scavenger overcame the inhibitory effects of mitochondrial fission. Mechanistically, we found that the ROS sensitive SHP-1/2 phosphatases partially regulate inhibitory effects of mitochondrial fission on TNBC migration. Overall, our work reveals the inhibitory effects of ROS in TNBC and supports mitochondrial dynamics as a potential therapeutic target for cancer.

2.
bioRxiv ; 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36993616

ABSTRACT

Estrogen receptor-positive (ER+) breast cancer commonly disseminates to bone marrow, where interactions with mesenchymal stromal cells (MSCs) shape disease trajectory. We modeled these interactions with tumor-MSC co-cultures and used an integrated transcriptome-proteome-network- analyses workflow to identify a comprehensive catalog of contact-induced changes. Induced genes and proteins in cancer cells, some borrowed and others tumor-intrinsic, were not recapitulated merely by conditioned media from MSCs. Protein-protein interaction networks revealed the rich connectome between 'borrowed' and 'intrinsic' components. Bioinformatic approaches prioritized one of the 'borrowed' components, CCDC88A /GIV, a multi-modular metastasis-related protein which has recently been implicated in driving one of the hallmarks of cancers, i.e., growth signaling autonomy. MSCs transferred GIV protein to ER+ breast cancer cells (that lack GIV) through tunnelling nanotubes via connexin (Cx)43-facilitated intercellular transport. Reinstating GIV alone in GIV-negative breast cancer cells reproduced ∼20% of both the 'borrowed' and the 'intrinsic' gene induction patterns from contact co-cultures; conferred resistance to anti-estrogen drugs; and enhanced tumor dissemination. Findings provide a multiomic insight into MSC→tumor cell intercellular transport and validate how transport of one such candidate, GIV, from the haves (MSCs) to have-nots (ER+ breast cancer) orchestrates aggressive disease states.

3.
Mol Cancer Res ; 21(5): 458-471, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36735350

ABSTRACT

Cancer cells reprogram energy metabolism through metabolic plasticity, adapting ATP-generating pathways in response to treatment or microenvironmental changes. Such adaptations enable cancer cells to resist standard therapy. We employed a coculture model of estrogen receptor-positive (ER+) breast cancer and mesenchymal stem cells (MSC) to model interactions of cancer cells with stromal microenvironments. Using single-cell endogenous and engineered biosensors for cellular metabolism, coculture with MSCs increased oxidative phosphorylation, intracellular ATP, and resistance of cancer cells to standard therapies. Cocultured cancer cells had increased MCT4, a lactate transporter, and were sensitive to the MCT1/4 inhibitor syrosingopine. Combining syrosingopine with fulvestrant, a selective estrogen receptor degrading drug, overcame resistance of ER+ breast cancer cells in coculture with MSCs. Treatment with antiestrogenic therapy increased metabolic plasticity and maintained intracellular ATP levels, while MCT1/4 inhibition successfully limited metabolic transitions and decreased ATP levels. Furthermore, MCT1/4 inhibition decreased heterogenous metabolic treatment responses versus antiestrogenic therapy. These data establish MSCs as a mediator of cancer cell metabolic plasticity and suggest metabolic interventions as a promising strategy to treat ER+ breast cancer and overcome resistance to standard clinical therapies. IMPLICATIONS: This study reveals how MSCs reprogram metabolism of ER+ breast cancer cells and point to MCT4 as potential therapeutic target to overcome resistance to antiestrogen drugs.


Subject(s)
Breast Neoplasms , Mesenchymal Stem Cells , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Receptors, Estrogen/metabolism , Mesenchymal Stem Cells/metabolism , Energy Metabolism , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Tumor Microenvironment
4.
Oncogene ; 41(29): 3705-3718, 2022 07.
Article in English | MEDLINE | ID: mdl-35732800

ABSTRACT

Patients with estrogen receptor-positive (ER+) breast cancer, the most common subtype, remain at risk for lethal metastatic disease years after diagnosis. Recurrence arises partly because tumor cells in bone marrow become resistant to estrogen-targeted therapy. Here, we utilized a co-culture model of bone marrow mesenchymal stem cells (MSCs) and ER+ breast cancer cells to recapitulate interactions of cancer cells in bone marrow niches. ER+ breast cancer cells in direct contact with MSCs acquire cancer stem-like (CSC) phenotypes with increased resistance to standard antiestrogenic drugs. We confirmed that co-culture with MSCs increased labile iron in breast cancer cells, a phenotype associated with CSCs and disease progression. Clinically approved iron chelators and in-house lysosomal iron-targeting compounds restored sensitivity to antiestrogenic therapy. These findings establish iron modulation as a mechanism to reverse MSC-induced drug resistance and suggest iron modulation in combination with estrogen-targeted therapy as a promising, translatable strategy to treat ER+ breast cancer.


Subject(s)
Mesenchymal Stem Cells , Neoplasms , Cell Line, Tumor , Drug Resistance , Drug Resistance, Neoplasm , Estrogen Antagonists/pharmacology , Estrogens/pharmacology , Iron , Receptors, Estrogen
5.
Adv Healthc Mater ; 11(10): e2101672, 2022 05.
Article in English | MEDLINE | ID: mdl-35106975

ABSTRACT

Cancer cells continually sense and respond to mechanical cues from the extracellular matrix (ECM). Interaction with the ECM can alter intracellular signaling cascades, leading to changes in processes that promote cancer cell growth, migration, and survival. The present study used a recently developed composite hydrogel composed of a fibrin matrix and phase-shift emulsion, termed an acoustically responsive scaffold (ARS), to investigate effects of local mechanical properties on breast cancer cell signaling. Treatment of ARSs with focused ultrasound drives acoustic droplet vaporization (ADV) in a spatiotemporally controlled manner, inducing local compaction and stiffening of the fibrin matrix adjacent to the matrix-bubble interface. Combining ARSs and live single cell imaging of triple-negative breast cancer cells, it is discovered that both basal and growth-factor stimulated activities of protein kinase B (also known as Akt) and extracellular signal-regulated kinase (ERK), two major kinases driving cancer progression, negatively correlate with increasing distance from the ADV-induced bubble both in vitro and in a mouse model. Together, these data demonstrate that local changes in ECM compaction regulate Akt and ERK signaling in breast cancer and support further applications of the novel ARS technology to analyze spatial and temporal effects of ECM mechanics on cell signaling and cancer biology.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Fibrin , Humans , Mice , Proto-Oncogene Proteins c-akt , Signal Transduction , Volatilization
6.
Oncogene ; 39(34): 5649-5662, 2020 08.
Article in English | MEDLINE | ID: mdl-32678295

ABSTRACT

Estrogen receptor-positive (ER+) breast cancer can recur up to 20 years after initial diagnosis. Delayed recurrences arise from disseminated tumors cells (DTCs) in sites such as bone marrow that remain quiescent during endocrine therapy and subsequently proliferate to produce clinically detectable metastases. Identifying therapies that eliminate DTCs and/or effectively target cells transitioning to proliferation promises to reduce risk of recurrence. To tackle this problem, we utilized a 3D co-culture model incorporating ER+ breast cancer cells and bone marrow mesenchymal stem cells to represent DTCs in a bone marrow niche. 3D co-cultures maintained cancer cells in a quiescent, viable state as measured by both single-cell and population-scale imaging. Single-cell imaging methods for metabolism by fluorescence lifetime (FLIM) of NADH and signaling by kinases Akt and ERK revealed that breast cancer cells utilized oxidative phosphorylation and signaling by Akt to a greater extent both in 3D co-cultures and a mouse model of ER+ breast cancer cells in bone marrow. Using our 3D co-culture model, we discovered that combination therapies targeting oxidative phosphorylation via the thioredoxin reductase (TrxR) inhibitor, D9, and the Akt inhibitor, MK-2206, preferentially eliminated breast cancer cells without altering viability of bone marrow stromal cells. Treatment of mice with disseminated ER+ human breast cancer showed that D9 plus MK-2206 blocked formation of new metastases more effectively than tamoxifen. These data establish an integrated experimental system to investigate DTCs in bone marrow and identify combination therapy against metabolic and kinase targets as a promising approach to effectively target these cells and reduce risk of recurrence in breast cancer.


Subject(s)
Bone Marrow/metabolism , Breast Neoplasms/metabolism , Cell Culture Techniques/methods , Neoplastic Cells, Circulating/metabolism , Receptors, Estrogen/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bone Marrow/drug effects , Bone Marrow/pathology , Breast Neoplasms/pathology , Breast Neoplasms/prevention & control , Cell Line, Tumor , Cell Survival/drug effects , Coculture Techniques , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacology , Female , Heterocyclic Compounds, 3-Ring/administration & dosage , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , MCF-7 Cells , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Neoplasm Recurrence, Local , Neoplastic Cells, Circulating/drug effects , Neoplastic Cells, Circulating/pathology , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Thioredoxin-Disulfide Reductase/metabolism , Xenograft Model Antitumor Assays/methods
7.
Mol Cancer Res ; 17(5): 1142-1154, 2019 05.
Article in English | MEDLINE | ID: mdl-30718260

ABSTRACT

Migration and invasion of cancer cells constitute fundamental processes in tumor progression and metastasis. Migratory cancer cells commonly upregulate expression of plasminogen activator inhibitor 1 (PAI1), and PAI1 correlates with poor prognosis in breast cancer. However, mechanisms by which PAI1 promotes migration of cancer cells remain incompletely defined. Here we show that increased PAI1 drives rearrangement of the actin cytoskeleton, mitochondrial fragmentation, and glycolytic metabolism in triple-negative breast cancer (TNBC) cells. In two-dimensional environments, both stable expression of PAI1 and treatment with recombinant PAI1 increased migration, which could be blocked with the specific inhibitor tiplaxtinin. PAI1 also promoted invasion into the extracellular matrix from coculture spheroids with human mammary fibroblasts in fibrin gels. Elevated cellular PAI1 enhanced cytoskeletal features associated with migration, actin-rich migratory structures, and reduced actin stress fibers. In orthotopic tumor xenografts, we discovered that TNBC cells with elevated PAI1 show collagen fibers aligned perpendicular to the tumor margin, an established marker of invasive breast tumors. Further studies revealed that PAI1 activates ERK signaling, a central regulator of motility, and promotes mitochondrial fragmentation. Consistent with known effects of mitochondrial fragmentation on metabolism, fluorescence lifetime imaging microscopy of endogenous NADH showed that PAI1 promotes glycolysis in cell-based assays, orthotopic tumor xenografts, and lung metastases. Together, these data demonstrate for the first time that PAI1 regulates cancer cell metabolism and suggest targeting metabolism to block motility and tumor progression. IMPLICATIONS: We identified a novel mechanism through which cancer cells alter their metabolism to promote tumor progression.


Subject(s)
Actin Cytoskeleton/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Movement , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Glycolysis , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MAP Kinase Signaling System , Mice , Neoplasm Transplantation , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Up-Regulation , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...