Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chemosphere ; 335: 139178, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37302496

ABSTRACT

H2O is essential for life to exist on earth; it is important to guarantee both the quality and supply of water to satisfy world demand. However, it became contaminated by a number of hazardous, inorganic industrial pollutants, which caused a number of issues like irrigation activities and unsafe human ingestion. Long-term exposure to harmful substances can result in respiratory, immunological, and neurological illnesses, cancer, and problems during pregnancy. Therefore, removing hazardous substances from wastewater and natural water sources is crucial. It is necessary to develop an alternate method that can effectively remove these toxins from water bodies, as conventional methods have several drawbacks. This review primarily aims to achieve the following goals: 1) to discuss the distribution of harmful chemicals: 2) to give specifics on numerous possible strategies for getting rid of hazardous chemicals, and 3) its effects on the environment and consequences for human health have been examined.


Subject(s)
Environmental Pollutants , Hazardous Substances , Humans , Female , Pregnancy , Hazardous Substances/toxicity , Water , Earth, Planet , Industry
2.
Microb Pathog ; 145: 104232, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32353578

ABSTRACT

Annihilation of biofilm forming bacterial pathogens is a challenging aspect in seafood and aquaculture industries. Microbes growing as biofilms cause deleterious effects on food products leading to food spoilage or loss of shelf life. As a measure to fight biofilms, agents that prevent/disrupt biofilms are recurrently screened. The study exemplifies the bactericidal and biofilm disruption potentials of a plant derived compound, diphyllin, against fish pathogens that colonizes Oreochromis mossambicus and Oreochromis niloticus. Precisely, diphyllin disrupted Salmonella typhi biofilms by triggering reactive oxidative species (ROS). Diphyllin-induced ROS had satisfactory correlation with S. typhi cell membrane damage and intracellular DNA degradation profiles providing a putative mechanistic model. In conclusion, the study identifies diphyllin as a therapeutic and dispersal agent aimed at biofilms formed by food-borne pathogens that persistently plague food processing and aquaculture settings.


Subject(s)
Anti-Bacterial Agents , Lignans , Animals , Anti-Bacterial Agents/pharmacology , Benzodioxoles , Biofilms , Microbial Sensitivity Tests , Salmonella typhi
3.
Langmuir ; 34(23): 6737-6747, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29791160

ABSTRACT

Measurement of the interaction force between two materials provides important information on various properties, such as adsorption, binding, or compatibility for coatings, adhesion, and composites. The interaction forces of zwitterionic and ionic monomers with graphite platelets (G) and reduced graphene oxide (rGO) surfaces were systematically investigated by atomic force microscopy (AFM) in air and water. The monomers examined were 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate (MPC), [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBE), [2-(acryloyloxy)ethyl]trimethylammonium chloride (ATC), and 2-methyl-2-propene-1-sulfonic acid sodium (MSS). The AFM studies revealed that MSS and SBE monomers with sulfonate units have stronger interaction forces with G surface in air and that MPC and ATC monomers with quaternary ammonium units have higher interaction forces in water. In the case of rGO surface, the monomers with quaternary ammonium units showed stronger interactions regardless of the medium. These interactions could be rationalized by the interaction mechanism between the monomers with graphene surfaces, such as cation-π for MPC and ATC and anion-π for MSS and SBE. Overall, cation-π interactions were effective in water, whereas anion-π interactions are effective in air with G surface. The adhesion values of MPC, SBE, ATC, and MSS on rGO were lower than the values measured on G surface. Among the monomers, MPC showed the highest dispersibility for aqueous graphene dispersions. Further, the adsorption of MPC on G and rGO surfaces was verified by high-resolution transmission electron microscopy and X-ray diffraction patterns.

SELECTION OF CITATIONS
SEARCH DETAIL
...