Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res ; 187: 106560, 2023 01.
Article in English | MEDLINE | ID: mdl-36417942

ABSTRACT

Painful peripheral neuropathy is a common neurological complication associated with human immunodeficiency virus (HIV) infection and anti-retroviral therapy. We characterized the impact of two CB2 cannabinoid agonists (AM1710 and LY2828360 - ligands differing in signaling bias and CNS penetration) on neuropathic nociception induced by the antiretroviral agent Zalcitabine (2',3'-dideoxycytidine; ddC). We also used a conditional knockout approach to identify cell types mediating CB2 agonist-induced antinociceptive efficacy and sparing of morphine tolerance. AM1710 and LY2828360 alleviated ddC-induced neuropathic nociception in mice of both sexes. These benefits were absent in global CB2 knockout mice, which exhibited robust morphine antinociception. Like morphine, AM1710 blunted ddC-induced increases in proinflammatory cytokine (IL-1ß, TNF-α) and chemokine (CCL2) mRNA expression levels. We generated advillinCre/+;CB2f/f conditional knockout mice to ascertain the role of CB2 localized to primary sensory neurons in CB2-mediated therapeutic effects. Antinociceptive efficacy of both AM1710 and LY2828360, but not reference analgesics, were absent in advillinCre/+;CB2f/f mice, which exhibited robust ddC-induced neuropathy. In ddC-treated CB2f/f mice, LY2828360 suppressed development of morphine tolerance and reversed established morphine tolerance, albeit with greater efficacy in male compared to female mice. LY2828360 failed to block or reverse morphine tolerance in advillinCre/+;CB2f/f mice. The present studies indicate that CB2 activation may alleviate HIV-associated antiretroviral neuropathy and identify a previously unreported mechanism through which CB2 activation produces antinociceptive efficacy. Our results also provide the first evidence that a CB2 agonist can reverse established morphine tolerance and demonstrate that CB2 localized to peripheral sensory neurons mediates the opioid tolerance sparing efficacy of CB2 agonists.


Subject(s)
Analgesics, Opioid , Antiretroviral Therapy, Highly Active , Drug Tolerance , Hyperalgesia , Morphine , Peripheral Nervous System Diseases , Receptor, Cannabinoid, CB2 , Animals , Female , Humans , Male , Mice , Analgesics, Opioid/therapeutic use , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Mice, Knockout , Morphine/therapeutic use , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Sensory Receptor Cells/metabolism , Antiretroviral Therapy, Highly Active/adverse effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy
2.
Chem Sci ; 12(40): 13506-13512, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34777770

ABSTRACT

Fatty acid amides (FAAs) are a family of second-messenger lipids that target cannabinoid receptors, and are known mediators of glucose-stimulated insulin secretion from pancreatic ß-cells. Due to the diversity observed in FAA structure and pharmacology, coupled with the expression of at least 3 different cannabinoid G protein-coupled receptors in primary and model ß-cells, our understanding of their role is limited by our inability to control their actions in time and space. To investigate the mechanisms by which FAAs regulate ß-cell excitability, we developed the Optically-Cleavable Targeted (OCT)-ligand approach, which combines the spatial resolution of self-labeling protein (SNAP-) tags with the temporal control of photocaged ligands. By linking a photocaged FAA to an o-benzylguanine (BG) motif, FAA signalling can be directed towards genetically-defined cellular membranes. We designed a probe to release palmitoylethanolamide (PEA), a GPR55 agonist known to stimulate glucose-stimulated insulin secretion (GSIS). When applied to ß-cells, OCT-PEA revealed that plasma membrane GPR55 stimulates ß-cell Ca2+ activity via phospholipase C. Moving forward, the OCT-ligand approach can be translated to other ligands and receptors, and will open up new experimental possibilities in targeted pharmacology.

3.
J Am Chem Soc ; 143(2): 736-743, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33399457

ABSTRACT

Cannabinoid receptor 2 (CB2) is a promising target for the treatment of neuroinflammation and other diseases. However, a lack of understanding of its complex signaling in cells and tissues complicates the therapeutic exploitation of CB2 as a drug target. We show for the first time that benchmark CB2 agonist HU308 increases cytosolic Ca2+ levels in AtT-20(CB2) cells via CB2 and phospholipase C. The synthesis of photoswitchable derivatives of HU308 from the common building block 3-OTf-HU308 enables optical control over this pathway with spatiotemporal precision, as demonstrated in a real-time Ca2+ fluorescence assay. Our findings reveal a novel messenger pathway by which HU308 and its derivatives affect cellular excitability, and they demonstrate the utility of chemical photoswitches to control and monitor CB2 signaling in real-time.


Subject(s)
Calcium/metabolism , Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/pharmacology , Receptor, Cannabinoid, CB2/agonists , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/chemistry , Cannabinoids/chemical synthesis , Cannabinoids/chemistry , Humans , Molecular Structure , Photochemical Processes
4.
ACS Chem Neurosci ; 11(22): 3802-3813, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33108719

ABSTRACT

Photoswitchable ligands can add an optical switch to a target receptor or signaling cascade and enable reversible control of neural circuits. The application of this approach, termed photopharmacology, to behavioral experiments has been impeded by a lack of integrated hardware capable of delivering both light and compounds to deep brain regions in moving subjects. Here, we devise a hybrid photochemical genetic approach to target neurons using a photoswitchable agonist of the capsaicin receptor TRPV1, red-AzCA-4. Using multifunctional fibers with optical and microfluidic capabilities, we delivered a transgene coding for TRPV1 into the ventral tegmental area (VTA). This sensitized excitatory VTA neurons to red-AzCA-4, allowing us to optically control conditioned place preference in mice, thus extending applications of photopharmacology to behavioral experiments. Applied to endogenous receptors, our approach may accelerate future studies of molecular mechanisms underlying animal behavior.


Subject(s)
Neurons , Ventral Tegmental Area , Animals , Behavior, Animal , Conditioning, Classical , Ligands , Mice
5.
Curr Biol ; 28(10): 1628-1634.e7, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29754898

ABSTRACT

Vivid episodic memories in people have been characterized as the replay of multiple unique events in sequential order [1-3]. The hippocampus plays a critical role in episodic memories in both people and rodents [2, 4-6]. Although rats remember multiple unique episodes [7, 8], it is currently unknown if animals "replay" episodic memories. Therefore, we developed an animal model of episodic memory replay. Here, we show that rats can remember a trial-unique stream of multiple episodes and the order in which these events occurred by engaging hippocampal-dependent episodic memory replay. We document that rats rely on episodic memory replay to remember the order of events rather than relying on non-episodic memories. Replay of episodic memories survives a long retention-interval challenge and interference from the memory of other events, which documents that replay is part of long-term episodic memory. The chemogenetic activating drug clozapine N-oxide (CNO), but not vehicle, reversibly impairs episodic memory replay in rats previously injected bilaterally in the hippocampus with a recombinant viral vector containing an inhibitory designer receptor exclusively activated by a designer drug (DREADD; AAV8-hSyn-hM4Di-mCherry). By contrast, two non-episodic memory assessments are unaffected by CNO, showing selectivity of this hippocampal-dependent impairment. Our approach provides an animal model of episodic memory replay, a process by which the rat searches its representations in episodic memory in sequential order to find information. Our findings using rats suggest that the ability to replay a stream of episodic memories is quite old in the evolutionary timescale.


Subject(s)
Hippocampus/physiology , Memory, Episodic , Mental Recall/physiology , Animals , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...