Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(14): 15768-15780, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617643

ABSTRACT

Hybrid protein-copper nanoflowers have emerged as promising materials with diverse applications in biocatalysis, biosensing, and bioremediation. Sericin, a waste biopolymer from the textile industry, has shown potential for fabricating such nanoflowers. However, the influence of the molecular weight of sericin on nanoflower morphology and peroxidase-like activity remains unexplored. This work focused on the self-assembly of nanoflowers using high- and low-molecular-weight (HMW and LMW) silk sericin combined with copper(II) as an inorganic moiety. The peroxidase-like activity of the resulting nanoflowers was evaluated using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and hydrogen peroxide (H2O2). The findings revealed that high-molecular-weight sericin hybrid nanoflowers (HMW-ShNFs) exhibited significantly higher peroxidase-like activity than low-molecular-weight sericin hybrid nanoflowers (LMW-ShNFs). Furthermore, HMW-ShNFs demonstrated superior reusability and storage stability, thereby enhancing their potential for practical use. This study also explored the application of HMW-ShNF for ciprofloxacin degradation to address the environmental and health hazards posed by this antibiotic in water. The results indicated that HMW-ShNFs facilitated the degradation of ciprofloxacin, achieving a maximum degradation of 33.2 ± 1% at pH 8 and 35 °C after 72 h. Overall, the enhanced peroxidase-like activity and successful application in ciprofloxacin degradation underscore the potential of HMW-ShNFs for a sustainable and ecofriendly remediation process. These findings open avenues for the further exploration and utilization of hybrid nanoflowers in various environmental applications.

2.
Front Plant Sci ; 15: 1336884, 2024.
Article in English | MEDLINE | ID: mdl-38357271

ABSTRACT

Introduction: Fertilizer management is crucial to maintaining a balance between environmental health, plant health, and total crop yield. Farmers are overutilizing fertilizers with a mind set to enhance the productive capacity of the field, which adversely impacts soil fertility and causes serious environmental hazards. To mitigate the issues of over-utilization of fertilizers, controlled-release fertilizers were developed using nitrogen fertilizer (ammonium chloride) loaded on cellulose nanofibres (named CNF*N). Methodology: In this study, the effects of CNF*N were compared with commercial nitrogen fertilizer (ammonium chloride) on Vigna radiata (Mung) under greenhouse conditions. The pot experiment was conducted using six treatments: first treatment was control, where the plant was cultivated (T1); second treatment was T2, where the plant was cultivated with CNF to determine the impact of CNF on the plant; third was T3 where commercial ammonium chloride (24 mg/ 2 kg soil) was added to the plant; fourth was T4, where the plant was loaded with CNF, viz. CNF*N contains 4.8 mg of nitrogen; fifth was T5 CNF*N pellet contains 12 mg of nitrogen, and the last sixth treatment (T6) where CNF*N pellet containing 24 mg of nitrogen. Results: It indicated that the growth parameters were best achieved in T6 treatment. Plant height was at its maximum in the T6 treatment (44.4 ±0.1cm) after the second harvest, whereas the minimum plant height was observed in T1, which was 39.1 ±0.1 cm. Root-to-shoot weight ratio was also maximum in T6 (0.183± 0.02) and minimum in T1 (0.07± 0.01) after second harvesting. The significant difference among the treatments was determined with Tukey's honestly significant difference (HSD). The nitrogen content (available and total) was significantly higher in the T4, T5, and T6 treatments (0.22, 0.25, and 0.28%) as compared to the control treatments (T1 (0.12%), T2 (0.13%), and T3 (0.14%) during the second harvesting stage (90 days), as nitrogen plays a crucial role in the development of vegetative growth in Vigna radiata. The rate of controlled-release nitrogen-fertilizer was found to be optimal in terms of plant growth and soil nutrients; hence, it could potentially play a crucial role in improving soil health and the yield of the crop.

3.
Int J Biol Macromol ; 259(Pt 1): 129653, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38280292

ABSTRACT

Bio-composites, which can be obtained from the renewable natural resources, are fascinating material for use as sustainable biomaterials with essential properties like biodegradable, bio-compatibility as well cyto-compatibility etc. These properties are useful for bio-medical including wound healing applications. In this study, fibre obtained banana pseudo stem of banana plant, which is otherwise wasted, was used as a material along with chitosan and guar gum to fabricate a banana fibre-biopolymer composite patch. The physiochemical properties of the patches were examined using Fourier Transformed Infra-red spectrophotometer (FT-IR), tensile tester, Scanning Electron Microscope (SEM), contact angle tester, swelling and degradation studies. We further demonstrated that a herbal drug, Nirgundi could be loaded to the patch showed controlled its release at different pHs. The patch had good antibacterial property and supported proliferation of mouse fibroblast cells. The study thus indicates that banana fibre-chitosan-guar gum composite can be developed into an alternative wound healing material.


Subject(s)
Chitosan , Galactans , Mannans , Musa , Plant Gums , Mice , Animals , Chitosan/chemistry , Spectroscopy, Fourier Transform Infrared , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
4.
Sci Rep ; 13(1): 16327, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770522

ABSTRACT

Rice straw is a waste product generated after the harvesting of rice crops and is commonly disposed of by burning it off in open fields. This study explored the potential for the extraction and conversion of cellulose to cellulose nanofibres (CNFs) to be used as smart delivery systems for fertilizers applications. In this study, alkali, steam explosion, and organosolv treatments were investigated for cellulose extraction efficiency. The morphological characterization of cellulose showed smooth fibrillar structures. Fourier transform infrared spectroscopy represented significant removal of non-cellulosic components in treatments. The crystallinity increased from 52.2 to 65% in CNFs after fibrillation. Cellulose nanofibres (CNFs) had an average diameter of 37.4 nm and - 25.2 mV surface charges as determined by SEM and zeta potential, respectively, which have desired properties for holding fertilizers. Therefore, this study paves the way for value-added uses of rice straw as alternatives to current environmentally harmful practices.

5.
Bioengineered ; 14(1): 2242124, 2023 12.
Article in English | MEDLINE | ID: mdl-37548430

ABSTRACT

Recently, the development of sustainable and environmentally friendly biomaterials has gained the attention of researchers as potential alternatives to petroleum-based materials. Biomaterials are a promising candidate to mitigate sustainability issues due to their renewability, biodegradability, and cost-effectiveness. Thus, the purpose of this study is to explore a cost-effective biomaterial-based delivery system for delivering fertilizers to plants. To achieve this, rice straw (agro-waste) was selected as a raw material for the extraction of cellulose. The cellulose was extracted through alkali treatment (12% NaOH), followed by TEMPO-based oxidation. The cellulose nanofibers were characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy, and transmission electron microscopy. In scanning electron microscopy, a loosening of the fibrillar structure in cellulose nanofibers (CNFs) was observed with a diameter of 17 ± 4 nm. The CNFs were loaded with nitrogen-based fertilizer (ammonium chloride) in 1:1, 1:2, and 2:1 (w/w) proportions. The loading was estimated through surface charge variation; in the case of the 1:1 sample, maximum reductions in surface charge were seen from -42.0 mV to -12.8 mV due to the binding of positive ammonium ions. In the release kinetics study, a controlled release pattern was observed at 1:1, which showed a 58% cumulative release of ammonium ions within 8 days. Thus, the study paves the way for value-added uses of rice straw as an alternative to the current environmentally harmful practices.


Bio-based cellulose nanofibers (CNFs) from rice straw via circular economy approach.Controlled release fertilizers for sustainable agriculture.Nanotechnology for precision agriculture and decarbonization via agricultural waste management.


Subject(s)
Nanofibers , Oryza , Cellulose/chemistry , Fertilizers , Oryza/chemistry , Nanofibers/chemistry , Sustainable Development , Delayed-Action Preparations , Spectroscopy, Fourier Transform Infrared , Biocompatible Materials , Ions
6.
Molecules ; 28(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903366

ABSTRACT

Silk from silkworms and spiders is an exceptionally important natural material, inspiring a range of new products and applications due to its high strength, elasticity, and toughness at low density, as well as its unique conductive and optical properties. Transgenic and recombinant technologies offer great promise for the scaled-up production of new silkworm- and spider-silk-inspired fibres. However, despite considerable effort, producing an artificial silk that recaptures the physico-chemical properties of naturally spun silk has thus far proven elusive. The mechanical, biochemical, and other properties of pre-and post-development fibres accordingly should be determined across scales and structural hierarchies whenever feasible. We have herein reviewed and made recommendations on some of those practices for measuring the bulk fibre properties; skin-core structures; and the primary, secondary, and tertiary structures of silk proteins and the properties of dopes and their proteins. We thereupon examine emerging methodologies and make assessments on how they might be utilized to realize the goal of developing high quality bio-inspired fibres.


Subject(s)
Bombyx , Fibroins , Spiders , Animals , Animals, Genetically Modified , Elasticity , Spiders/chemistry , Fibroins/chemistry
7.
Bioact Mater ; 25: 291-306, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36844365

ABSTRACT

Biopolymers play a critical role as scaffolds used in tendon and ligament (TL) regeneration. Although advanced biopolymer materials have been proposed with optimised mechanical properties, biocompatibility, degradation, and processability, it is still challenging to find the right balance between these properties. Here, we aim to develop novel hybrid biocomposites based on poly(p-dioxanone) (PDO), poly(lactide-co-caprolactone) (LCL) and silk to produce high-performance grafts suitable for TL tissue repair. Biocomposites containing 1-15% of silk were studied through a range of characterisation techniques. We then explored biocompatibility through in vitro and in vivo studies using a mouse model. We found that adding up to 5% silk increases the tensile properties, degradation rate and miscibility between PDO and LCL phases without agglomeration of silk inside the composites. Furthermore, addition of silk increases surface roughness and hydrophilicity. In vitro experiments show that the silk improved attachment of tendon-derived stem cells and proliferation over 72 h, while in vivo studies indicate that the silk can reduce the expression of pro-inflammatory cytokines after six weeks of implantation. Finally, we selected a promising biocomposite and created a prototype TL graft based on extruded fibres. We found that the tensile properties of both individual fibres and braided grafts could be suitable for anterior cruciate ligament (ACL) repair applications.

8.
J Colloid Interface Sci ; 631(Pt A): 46-55, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36368215

ABSTRACT

This work aims to understand how pre-freezing treatments (-20 °C, -80 °C or -196 °C (liquid nitrogen)) affect the microstructure, mechanical properties and secondary structure of silk scaffolds prepared from lyophilization of silk hydrogels and silk solutions. It is found that in comparison with silk solutions, silk hydrogels at the same silk fibroin concentrations produce scaffolds with more nanofibrous structures when they are pre-frozen at the different temperatures. Although pre-freezing with liquid nitrogen can produce nanofibrous scaffolds from either a silk solution (low concentration of 2%) or silk hydrogel (produced from 2 to 6% silk fibroin solutions), aligned macro-channels can be produced only from silk hydrogels. In addition, scaffolds obtained from silk hydrogels are dominated by ß-sheets due to the crystallization process for gel network formation, while scaffolds prepared from silk solutions are largely amorphous. The findings of this work are important to tune the microstructure and mechanical properties of silk scaffolds.


Subject(s)
Fibroins , Silk , Silk/chemistry , Fibroins/chemistry , Hydrogels/chemistry , Freezing , Materials Testing , Nitrogen
9.
Sci Adv ; 8(41): eabo6043, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36223455

ABSTRACT

Spider silks are among the toughest known materials and thus provide models for renewable, biodegradable, and sustainable biopolymers. However, the entirety of their diversity still remains elusive, and silks that exceed the performance limits of industrial fibers are constantly being found. We obtained transcriptome assemblies from 1098 species of spiders to comprehensively catalog silk gene sequences and measured the mechanical, thermal, structural, and hydration properties of the dragline silks of 446 species. The combination of these silk protein genotype-phenotype data revealed essential contributions of multicomponent structures with major ampullate spidroin 1 to 3 paralogs in high-performance dragline silks and numerous amino acid motifs contributing to each of the measured properties. We hope that our global sampling, comprehensive testing, integrated analysis, and open data will provide a solid starting point for future biomaterial designs.

10.
Nanoscale ; 14(37): 13812-13823, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36103198

ABSTRACT

Materials based on silk fibroin (SF) are important for many biomedical applications due to their excellent biocompatibility and tunable biodegradability. However, the insufficient mechanical strength and low bioactivity of these materials have limited their applications. For silk hydrogels, slow gelation is also a crucial problem. In this work, a simple approach is developed to address these challenging problems all at once. By mixing SF solution with bioglass (BG) sol, instant gelation of silk is induced, the storage modulus of the hydrogel and the compressive modulus of the aerogel are significantly enhanced. The formation of a complex of SF and tetraethyl orthosilicate (TEOS), either through hydrogen bonding or TEOS condensation on SF, facilitated the aggregation of SF and, on the other hand, created active sites for the condensation of TEOS and BG formation on the surface of silk nanofibrils. The resultant hybrid gels have much higher capacity for biomineralization, indicating their higher bioactivity, compared with the pristine silk gels. This organic (SF)-inorganic (BG) mutual nucleation induction and templating can be used for a general approach to produce bioactive silk materials of various formats not limited to gels and may also inspire the formation of other functional protein-BG hybrid materials.


Subject(s)
Fibroins , Silk , Ceramics , Fibroins/chemistry , Hydrogels/chemistry , Silk/chemistry
11.
Front Plant Sci ; 13: 895740, 2022.
Article in English | MEDLINE | ID: mdl-35800605

ABSTRACT

Agro-textiles have been used in the agriculture sector for thousands of years and are an attractive tool for the protection of crops during their entire lifecycle. Currently, the agro-textile market is dominated by polyolefins or petrochemical-based agro-textiles. However, climate change and an increase in greenhouse gas emissions have raised concern about the future oil-based economy, and petroleum-based agro-textiles have become expensive and less desirable in the modern world. Other products include agro-textiles based on natural fibers which degrade so fast in the environment that their recovery from the field becomes difficult and unattractive even by efficient recycling or combustion, and their lifetime is usually limited to 1 or a maximum of 2 years. Hence, the development of bio-based agro-textiles with a reduced impact on the environment and with extended durability is foreseen to initiate the growth in the bio-based economy. The world is gradually preparing the shift toward a bio-based economy, and research for sustainable bio-based alternatives has already been initiated. This review provides insight into the various agro-textiles used currently in agriculture and the research going on in the area of agro-textiles to offer alternative solutions to the current agro-textile market.

12.
J Mater Chem B ; 10(29): 5561-5570, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35388855

ABSTRACT

Silk is a unique fiber, having a strength and toughness that exceeds other natural fibers. While inroads have been made in our understanding of silkworm silk structure and function, few studies have measured structure and function at nanoscales. As a consequence, the sources of variation in mechanical properties along single silk fibers remain unresolved at multiple scales. Here we utilized state of the art spectroscopic and microscopic methodologies to show that the silks of species of wild and domesticated silkworms vary in mechanical properties along a single fiber and, what is more, this variation correlates with nanoscale void formations. These results can also explain the strain hardening behaviours observed in the silks where structural features of the proteins could not. We thereupon devised a predictive thermal model and showed that the voids contribute to temperature regulation within the silkworm cocoons.


Subject(s)
Bombyx , Silk , Animals , Bombyx/chemistry , Silk/chemistry
13.
Macromol Rapid Commun ; 43(7): e2100891, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34939252

ABSTRACT

Regenerated silk fibers typically fall short of silkworm cocoon fibers in mechanical properties due to reduced fiber crystal structure and alignment. One approach to address this has been to employ inorganic materials as reinforcing agents. The present study avoids the need for synthetic additives, demonstrating the first use of exfoliated silk nanofibers to control silk solution crystallization, resulting in all-silk pseudocomposite fibers with remarkable mechanical properties. Incorporating only 0.06 wt% silk nanofibers led to a ≈44% increase in tensile strength (over 600 MPa) and ≈33% increase in toughness (over 200 kJ kg-1 ) compared with fibers without silk nanofibers. These remarkable properties can be attributed to nanofiber crystal seeding in conjunction with fiber draw. The crystallinity nearly doubled from ≈17% for fiber spun from pure silk solution to ≈30% for the silk nanofiber reinforced sample. The latter fiber also shows a high degree of crystal orientation with a Herman's orientation factor of 0.93, a value which approaches that of natural degummed B. mori silk cocoon fiber (0.96). This study provides a strong foundation to guide the development of simple, eco-friendly methods to spin regenerated silk with excellent properties and a hierarchical structure that mimics natural silk.


Subject(s)
Bombyx , Fibroins , Nanofibers , Animals , Bombyx/chemistry , Fibroins/chemistry , Nanofibers/chemistry , Silk/chemistry , Tensile Strength
14.
Int J Biol Macromol ; 179: 20-32, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33667557

ABSTRACT

We characterised fibres and papers of microfibrillated silk from Bombyx mori produced by mechanical and enzymatic process. Milling increased the specific surface area of fibres from 1.5 to 8.5 m2/g and that enzymatic pre-treatment increased it further to 16.5 m2/g. These fibrils produced a uniform, significantly strong (tenacity 55 Nm/g) and stiff (Young's modulus > 2 GPa) papers. Enzymatic pre-treatment did not reduce molecular weight and tensile strength of papers but significantly improved fibrillation. Silk remained highly crystalline throughout the fibrillation process. Protease biodegradation was more rapid after fibrillation. Biodegradation was impacted by structural change due to enzymatic pre-treatment during the fibrillation. Biodegraded silk had much higher thermal degradation temperature. The unique combination of high strength, slow yet predicable degradation and controllable wicking properties make the materials ideally suited to biomedical and healthcare applications.


Subject(s)
Paper , Silk/chemistry , Animals , Bombyx , Elastic Modulus , Stress, Mechanical , Tensile Strength
15.
Biomacromolecules ; 22(2): 788-799, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33337131

ABSTRACT

Low-molecular weight (LMW) silk was utilized as a LMW silk plasticizer for regenerated silk, generating weak physical crosslinks between high-molecular weight (HMW) silk chains in the amorphous regions of a mixed solution of HMW/LMW silk. The plasticization effect of LMW silk was investigated using mechanical testing, Raman spectroscopy, and wide-angle X-ray scattering (WAXS). Small amounts (10%) of LMW silk resulted in a 19.4% enhancement in fiber extensibility and 37.8% increase in toughness. The addition of the LMW silk facilitated the movement of HMW silk chains during drawing, resulting in an increase in molecular chain orientation when compared with silk spun from 100% HMW silk solution. The best regenerated silk fibers produced in this work had an orientation factor of 0.94 and crystallinity of 47.82%, close to the values of natural degummedBombyx mori silk fiber. The approach and mechanism elucidated here can facilitate artificial silk systems with enhanced properties.


Subject(s)
Bombyx , Fibroins , Animals , Molecular Weight , Silk , Spectrum Analysis, Raman
16.
Macromol Biosci ; 21(3): e2000357, 2021 03.
Article in English | MEDLINE | ID: mdl-33369111

ABSTRACT

Silver nanoparticles (AgNPs) are in situ synthesized for the first time on microfibrillated silk (MFS) exfoliated from domesticated Philosamia cynthia ricini (eri) and Bombyx mori (mulberry) silkworm silk fibers. The process is rapid (hours time), does not rely on harmful chemicals, and produces robust and flexible AgNPs coated MFS (MFS-AgNPs) protein papers with excellent handling properties. None of these can be achieved by approaches used in the past to fabricate AgNPs silk systems. MFS bonds the AgNPs strongly, providing good support and stabilization for the NPs, leading to strong wash fastness. The mechanical properties of the MFS-AgNPs papers largely do not change compared to the MFS papers without nanoparticles, except for some higher concentration of AgNPs in the case of mulberry silk. The improved tensile properties of eri silk papers with or without AgNPs compared to mulberry silk papers can be attributed to the higher degree of fibrillation achieved in eri silk and its inherent higher ductility. MFS-AgNPs from eri silk also exhibit strong antibacterial activity. This study provides the basis for the development of smart protein papers based on silk fiber and functional nanomaterials.


Subject(s)
Insect Proteins/chemistry , Metal Nanoparticles/chemistry , Paper , Silk/chemistry , Silver/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Bombyx , Escherichia coli/drug effects , Imaging, Three-Dimensional , Insect Proteins/ultrastructure , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Optical Imaging , Photoelectron Spectroscopy , Silk/ultrastructure , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects
17.
Mater Sci Eng C Mater Biol Appl ; 118: 111433, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33255027

ABSTRACT

Polycaprolactone (PCL) scaffolds have been widely investigated for tissue engineering applications, however, they exhibit poor cell adhesion and mechanical properties. Subsequently, PCL composites have been produced to improve the material properties. This study utilises a natural material, Bombyx mori silk microparticles (SMP) prepared by milling silk fibre, to produce a composite to enhance the scaffolds properties. Silk is biocompatible and biodegradable with excellent mechanical properties. However, there are no studies using SMPs as a reinforcing agent in a 3D printed thermoplastic polymer scaffold. PCL/SMP (10, 20, 30 wt%) composites were prepared by melt blending. Rheological analysis showed that SMP loading increased the shear thinning and storage modulus of the material. Scaffolds were fabricated using a screw-assisted extrusion-based additive manufacturing system. Scanning electron microscopy and X-ray microtomography was used to determine scaffold morphology. The scaffolds had high interconnectivity with regular printed fibres and pore morphologies within the designed parameters. Compressive mechanical testing showed that the addition of SMP significantly improved the compressive Young's modulus of the scaffolds. The scaffolds were more hydrophobic with the inclusion of SMP which was linked to a decrease in total protein adsorption. Cell behaviour was assessed using human adipose derived mesenchymal stem cells. A cytotoxic effect was observed at higher particle loading (30 wt%) after 7 days of culture. By day 21, 10 wt% loading showed significantly higher cell metabolic activity and proliferation, high cell viability, and cell migration throughout the scaffold. Calcium mineral deposition was observed on the scaffolds during cell culture. Large calcium mineral deposits were observed at 30 wt% and smaller calcium deposits were observed at 10 wt%. This study demonstrates that SMPs incorporated into a PCL scaffold provided effective mechanical reinforcement, improved the rate of degradation, and increased cell proliferation, demonstrating potential suitability for bone tissue engineering applications.


Subject(s)
Silk , Tissue Engineering , Humans , Polyesters , Porosity , Printing, Three-Dimensional , Tissue Scaffolds
18.
Int J Biol Macromol ; 164: 2389-2398, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32798542

ABSTRACT

Silk fiber is formed by an assembly of fibrils. The fibrils can be isolated by a top-down mechanical process called microfibrillation and the fibrils are known as microfibrillated silk (MFS). The process involves chopping, milling, enzyme treatment and high-pressure homogenization. The milling is an important manufacturing step and to optimize the milling step, a response surface methodology was used in this work where the influence of fiber content in milled suspension, milling time and alkaline concentration were investigated. Output responses for the optimization were diameter distribution of fibrils, size and percentage of different diameter fractions, and the aspect ratio. The main and interaction effects of the milling parameters on these responses were statistically analysed. Milling time was the most significant factor for producing finer fibrils while the fiber content in milling had the maximum impact in reducing the number of large fibrils. Milling time had a positive correlation with the aspect ratio. The optimized milling resulted in MFS with an average diameter of 55.35 nm and 90% of MFS less than 100 nm based on high-magnification SEM image analysis. The aspect ratio of the MFS was 137. The MFS suspension was stable over the pH range 3-11.


Subject(s)
Bombyx/chemistry , Nanofibers/chemistry , Silk/chemistry , Animals
20.
Biomacromolecules ; 21(3): 1303-1314, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32027497

ABSTRACT

The exfoliation of silk fiber is an attractive method to produce silk micro- and nanofibers that retain the secondary structure of native silk. However, most fibrillation methods used to date require the use of toxic and/or expensive solvents and the use of high energy. This study describes a low cost, scalable method to produce microfibrillated silk nanofibers without the use of toxic chemicals by controlling the application of shear using commercially scalable milling and homogenization equipment. Manipulation of the degumming conditions (alkaline concentration and degumming temperature) and the shear in milling and/or homogenization enabled control over the degree of fibrillation. The microfibrillated silk was then characterized to determine structural change during processing and the stability of the resulting suspensions at different pH. Silk nanofibers obtained from milling degummed silk were characterized using atomic force microscopy. Nanofibers obtained both with and without high-pressure homogenization were then used to produce silk "protein paper" through casting. Silk degumming conditions played a critical role in determining the degree of microfibrillation and the properties of the cast silk papers. The silk papers produced from homogenized nanofibers showed excellent mechanical properties, high water absorption, and wicking properties. The silk papers were excellent for supporting the attachment and growth of human skin keratinocytes, demonstrating application possibilities in healthcare such as wound healing.


Subject(s)
Fibroins , Nanofibers , Humans , Protein Structure, Secondary , Silk , Solvents , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...