Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 46(3): 2863-2877, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38367195

ABSTRACT

Baricitinib is considered a first-line treatment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected adult patients with an associated cytokine storm syndrome (CSS). Our objective was to compare rates of secondary infections and long-term outcomes of elderly and non-elderly patients who received baricitinib for COVID-19. We conducted a single-centre observational study between November 2020 and September 2023, focusing on hospitalized adult SARS-CoV-2 patients with CSS, categorized as elderly (≥ 65 years) and non-elderly (< 65 years). Enrolment, severity stratification, and diagnosis of infectious complications followed predefined criteria. Outcomes of all-cause mortality and rates of non-severe and severe secondary infections were assessed at 1-year post-treatment initiation. Kaplan-Meier analysis was performed for survival analysis. In total, 490 patients were enrolled (median age 65 ± 23 (21-100) years (years, median ± IQR, min-max); 49.18% elderly; 59.59% male). Elderly patients were admitted to the hospital significantly earlier (7 ± 5 days vs. 8 ± 4 days; p = 0.02), experienced a higher occurrence of severe COVID-19 (121/241, 50.21% vs. 98/249, 39.36%; p = 0.02), and required the use of non-invasive ventilation at baseline (167/225, 74.22% vs. 153/236, 64.83%; p = 0.03). At 1 year, all-cause mortality was significantly higher in the elderly subgroup (111/241, 46.06% vs. 29/249, 11.65%; p < 0.01). At 90 days and 1 year, rates of any severe secondary infection were also more prevalent among the elderly (56/241, 23.24% vs. 37/249 14.86%; p = 0.02 and 58/241, 24.07% vs. 39/249, 15.66%; p = 0.02). In conclusion, elderly SARS-CoV-2-infected patients experience a more severe clinical course, higher secondary infection rates, and increased risk for long-term mortality, regardless of immunomodulatory therapy.


Subject(s)
Azetidines , COVID-19 , Coinfection , Purines , Pyrazoles , Sulfonamides , Humans , Male , Aged , Middle Aged , Aged, 80 and over , Female , SARS-CoV-2 , Hungary , COVID-19 Drug Treatment
2.
Antibiotics (Basel) ; 12(7)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37508292

ABSTRACT

BACKGROUND: Nearly 10% of COVID-19 cases will require admission to the intensive care unit (ICU). Our aim was to assess the clinical and microbiological outcomes of secondary infections among critically ill COVID-19 adult patients treated with/without immunomodulation. METHODS: A prospective observational cohort study was performed between 2020 and 2022 at a single ICU. The diagnosis and severity classification were established by the ECDC and WHO criteria, respectively. Eligible patients were included consecutively at admission, and followed for +30 days post-inclusion. Bloodstream-infections (BSIs), ventilator-associated bacterial pneumonia (VAP), and COVID-19-associated invasive pulmonary aspergillosis (CAPA) were defined according to international guidelines. Patient stratification was performed by immunomodulatory therapy administration (dexamethasone, tocilizumab, baricitinib/ruxolitinib). The primary outcome was any microbiologically confirmed major infectious complication, secondary outcomes were invasive mechanical ventilation (IMV) requirement and all-cause mortality. RESULTS: Altogether, 379 adults were included. At baseline, 249/379 (65.7%) required IMV and 196/379 (51.7%) had a cytokine storm. At +30 days post-inclusion, the rate of any microbiologically confirmed major infectious complication was 151/379 (39.8%), IMV requirement and all-cause mortality were 303/379 (79.9%) and 203/379 (53.6%), respectively. There were no statistically significant outcome differences after stratification. BSI, VAP, and CAPA episodes were mostly caused by Enterococcus faecalis (27/124, 22.1%), Pseudomonas aeruginosa (26/91, 28.6%), and Aspergillus fumigatus (20/20, 100%), respectively. Concerning the primary outcome, Kaplan-Meier analysis showed similar probability distributions between the treatment subgroups (118/299, 39.5% vs. 33/80, 41.3%, log-rank p = 0.22), and immunomodulation was not retained as its independent predictor in multivariate logistic regression. CONCLUSIONS: Secondary infections among critically ill COVID-19 adult patients represent a relevant burden, probably irrespective of immunomodulatory treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...