Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701198

ABSTRACT

The concentration of inorganic phosphate (Pi) in the chloroplast stroma must be maintained within narrow limits to sustain photosynthesis and to direct the partitioning of fixed carbon. However, it is unknown if these limits or the underlying contributions of different chloroplastic Pi transporters vary throughout the photoperiod or between chloroplasts in different leaf tissues. To address these questions, we applied live Pi imaging to Arabidopsis (Arabidopsis thaliana) wild-type plants and two loss-of-function transporter mutants: triose phosphate/phosphate translocator (tpt), phosphate transporter 2; 1 (pht2; 1), and tpt pht2; 1. Our analyses revealed that stromal Pi varies spatially and temporally, and that TPT and PHT2; 1 contribute to Pi import with overlapping tissue specificities. Further, the series of progressively diminished steady-state stromal Pi levels in these mutants provided the means to examine the effects of Pi on photosynthetic efficiency without imposing nutritional deprivation. ΦPSII and nonphotochemical quenching (NPQ) correlated with stromal Pi levels. However, the proton efflux activity of the ATP synthase (gH+) and the thylakoid proton motive force (pmf) were unaltered under growth conditions, but were suppressed transiently after a dark to light transition with return to wild-type levels within 2 minutes. These results argue against a simple substrate-level limitation of ATP synthase by depletion of stromal Pi, favoring more integrated regulatory models, which include rapid acclimation of thylakoid ATP synthase activity to reduced Pi levels.

2.
Plant Physiol ; 184(4): 2064-2077, 2020 12.
Article in English | MEDLINE | ID: mdl-32999006

ABSTRACT

The availability of inorganic phosphate (Pi) limits plant growth and crop productivity on much of the world's arable land. To better understand how plants cope with deficient and variable supplies of this essential nutrient, we used Pi imaging to spatially resolve and quantify cytosolic Pi concentrations and the respective contributions of Pi uptake, metabolic recycling, and vacuolar sequestration to cytosolic Pi homeostasis in Arabidopsis (Arabidopsis thaliana) roots. Microinjection coupled with confocal microscopy was used to calibrate a FRET-based Pi sensor to determine absolute, rather than relative, Pi concentrations in live plants. High-resolution mapping of cytosolic Pi concentrations in different cells, tissues, and developmental zones of the root revealed that cytosolic concentrations varied between developmental zones, with highest levels in the transition zone, whereas concentrations were equivalent in epidermis, cortex, and endodermis within each zone. Pi concentrations in all zones were reduced, at different rates, by Pi starvation, but the developmental pattern of Pi concentration persisted. Pi uptake, metabolic recycling, and vacuolar sequestration were distinguished in each zone by using cyanide to block Pi assimilation in wild-type plants and a vacuolar Pi transport mutant, and then measuring the subsequent change in cytosolic Pi concentration over time. Each of these processes exhibited distinct spatial profiles in the root, but only vacuolar Pi sequestration corresponded with steady-state cytosolic Pi concentrations. These results highlight the complexity of Pi dynamics in live plants and revealed developmental control of root Pi homeostasis, which has potential implications for plant sensing and signaling of Pi.


Subject(s)
Arabidopsis/chemistry , Arabidopsis/growth & development , Biological Transport/physiology , Cytosol/chemistry , Phosphates/analysis , Plant Roots/chemistry , Plant Roots/growth & development
3.
Biomed Opt Express ; 5(5): 1363-77, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24877001

ABSTRACT

The model-based image reconstruction approaches in photoacoustic tomography have a distinct advantage compared to traditional analytical methods for cases where limited data is available. These methods typically deploy Tikhonov based regularization scheme to reconstruct the initial pressure from the boundary acoustic data. The model-resolution for these cases represents the blur induced by the regularization scheme. A method that utilizes this blurring model and performs the basis pursuit deconvolution to improve the quantitative accuracy of the reconstructed photoacoustic image is proposed and shown to be superior compared to other traditional methods via three numerical experiments. Moreover, this deconvolution including the building of an approximate blur matrix is achieved via the Lanczos bidagonalization (least-squares QR) making this approach attractive in real-time.

SELECTION OF CITATIONS
SEARCH DETAIL
...