Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Funct Plant Biol ; 512024 05.
Article in English | MEDLINE | ID: mdl-38743837

ABSTRACT

Cassava (Manihot esculenta Crantz), an important tropical crop, is affected by extreme climatic events, including rising CO2 levels. We evaluated the short-term effect of elevated CO2 concentration (ECO2 ) (600, 800 and 1000ppm) on the photosynthetic efficiency of 14 cassava genotypes. ECO2 significantly altered gaseous exchange parameters (net photosynthetic rate (P n ), stomatal conductance (g s ), intercellular CO2 (C i ) and transpiration (E )) in cassava leaves. There were significant but varying interactive effects between ECO2 and varieties on these physiological characteristics. ECO2 at 600 and 800ppm increased the P n rate in the range of 13-24% in comparison to 400ppm (ambient CO2 ), followed by acclimation at the highest concentration of 1000ppm. A similar trend was observed in g s and E . Conversely, C i increased significantly and linearly across increasing CO2 concentration. Along with C i , a steady increase in water use efficiency [WUEintrinsic (P n /g s ) and WUEinstantaneous (P n /E )] across various CO2 concentrations corresponded with the central role of restricted stomatal activity, a common response under ECO2 . Furthermore, P n had a significant quadratic relationship with the ECO2 (R 2 =0.489) and a significant and linear relationship with C i (R 2 =0.227). Relative humidity and vapour pressure deficit during the time of measurements remained at 70-85% and ~0.9-1.31kPa, respectively, at 26±2°C leaf temperature. Notably, not a single variety exhibited constant performance for any of the parameters across CO2 concentrations. Our results indicate that the potential photosynthesis can be increased up to 800ppm cassava varieties with high sink capacity can be cultivated under protected cultivation to attain higher productivity.


Subject(s)
Carbon Dioxide , Manihot , Photosynthesis , Manihot/drug effects , Manihot/physiology , Photosynthesis/drug effects , Carbon Dioxide/metabolism , Plant Leaves/drug effects , Plant Transpiration/drug effects , Plant Stomata/physiology , Plant Stomata/drug effects , Genotype , Water
2.
Nature ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749479

ABSTRACT

Immune imprinting is a phenomenon in which prior antigenic experiences influence responses to subsequent infection or vaccination1,2. The effects of immune imprinting on serum antibody responses after boosting with variant-matched SARS-CoV-2 vaccines remain uncertain. Here, we characterized the serum antibody responses after mRNA vaccine boosting of mice and human clinical trial participants. In mice, a single dose of a preclinical version of mRNA-1273 vaccine encoding Wuhan-1 spike minimally imprinted serum responses elicited by Omicron boosters, enabling generation of type-specific antibodies. However, imprinting was observed in mice receiving an Omicron booster after two priming doses of mRNA-1273, an effect that was mitigated by a second booster dose of Omicron vaccine. In both SARS-CoV-2 infected or uninfected humans who received two Omicron-matched boosters after two or more doses of the prototype mRNA-1273 vaccine, spike-binding and neutralizing serum antibodies cross-reacted with Omicron variants as well as more distantly related sarbecoviruses. Because serum neutralizing responses against Omicron strains and other sarbecoviruses were abrogated after pre-clearing with Wuhan-1 spike protein, antibodies induced by XBB.1.5 boosting in humans focus on conserved epitopes targeted by the antecedent mRNA-1273 primary series. Thus, the antibody response to Omicron-based boosters in humans is imprinted by immunizations with historical mRNA-1273 vaccines, but this outcome may be beneficial as it drives expansion of cross-neutralizing antibodies that inhibit infection of emerging SARS-CoV-2 variants and distantly related sarbecoviruses.

3.
Nat Immunol ; 25(3): 537-551, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38337035

ABSTRACT

A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.


Subject(s)
COVID-19 , Respiratory Tract Infections , Vaccines , Cricetinae , Animals , Mice , CD8-Positive T-Lymphocytes , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Pan troglodytes
5.
Cell ; 187(2): 360-374.e19, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38176410

ABSTRACT

The very-low-density lipoprotein receptor (VLDLR) comprises eight LDLR type A (LA) domains and supports entry of distantly related alphaviruses, including Eastern equine encephalitis virus (EEEV) and Semliki Forest virus (SFV). Here, by resolving multiple cryo-electron microscopy structures of EEEV-VLDLR complexes and performing mutagenesis and functional studies, we show that EEEV uses multiple sites (E1/E2 cleft and E2 A domain) to engage more than one LA domain simultaneously. However, no single LA domain is necessary or sufficient to support efficient EEEV infection. Whereas all EEEV strains show conservation of two VLDLR-binding sites, the EEEV PE-6 strain and a few other EEE complex members feature a single amino acid substitution that enables binding of LA domains to an additional site on the E2 B domain. These structural and functional analyses informed the design of a minimal VLDLR decoy receptor that neutralizes EEEV infection and protects mice from lethal challenge.


Subject(s)
Cryoelectron Microscopy , Encephalitis Virus, Eastern Equine , Encephalomyelitis, Equine , Receptors, LDL , Animals , Mice , Alphavirus/physiology , Encephalitis Virus, Eastern Equine/physiology , Encephalitis Virus, Eastern Equine/ultrastructure , Encephalomyelitis, Equine/metabolism , Horses , Protein Binding , Receptors, LDL/ultrastructure
6.
JCI Insight ; 9(3)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38175703

ABSTRACT

Immunoglobulin (IG) replacement products are used routinely in patients with immune deficiency and other immune dysregulation disorders who have poor responses to vaccination and require passive immunity conferred by commercial antibody products. The binding, neutralizing, and protective activity of intravenously administered IG against SARS-CoV-2 emerging variants remains unknown. Here, we tested 198 different IG products manufactured from December 2019 to August 2022. We show that prepandemic IG had no appreciable cross-reactivity or neutralizing activity against SARS-CoV-2. Anti-spike antibody titers and neutralizing activity against SARS-CoV-2 WA1/2020 D614G increased gradually after the pandemic started and reached levels comparable to vaccinated healthy donors 18 months after the diagnosis of the first COVID-19 case in the United States in January 2020. The average time between production to infusion of IG products was 8 months, which resulted in poor neutralization of the variant strain circulating at the time of infusion. Despite limited neutralizing activity, IG prophylaxis with clinically relevant dosing protected susceptible K18-hACE2-transgenic mice against clinical disease, lung infection, and lung inflammation caused by the XBB.1.5 Omicron variant. Moreover, following IG prophylaxis, levels of XBB.1.5 infection in the lung were higher in FcγR-KO mice than in WT mice. Thus, IG replacement products with poor neutralizing activity against evolving SARS-CoV-2 variants likely confer protection to patients with immune deficiency disorders through Fc effector function mechanisms.


Subject(s)
COVID-19 , Humans , Animals , Mice , COVID-19/prevention & control , SARS-CoV-2 , Antibodies , Cross Reactions , Mice, Transgenic
7.
Nat Commun ; 15(1): 246, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38172096

ABSTRACT

Members of the low-density lipoprotein receptor (LDLR) family, including LDLRAD3, VLDLR, and ApoER2, were recently described as entry factors for different alphaviruses. However, based on studies with gene edited cells and knockout mice, blockade or abrogation of these receptors does not fully inhibit alphavirus infection, indicating the existence of additional uncharacterized entry factors. Here, we perform a CRISPR-Cas9 genome-wide loss-of-function screen in mouse neuronal cells with a chimeric alphavirus expressing the Eastern equine encephalitis virus (EEEV) structural proteins and identify LDLR as a candidate receptor. Expression of LDLR on the surface of neuronal or non-neuronal cells facilitates binding and infection of EEEV, Western equine encephalitis virus, and Semliki Forest virus. Domain mapping and binding studies reveal a low-affinity interaction with LA domain 3 (LA3) that can be enhanced by concatenation of LA3 repeats. Soluble decoy proteins with multiple LA3 repeats inhibit EEEV infection in cell culture and in mice. Our results establish LDLR as a low-affinity receptor for multiple alphaviruses and highlight a possible path for developing inhibitors that could mitigate infection and disease.


Subject(s)
Alphavirus Infections , Alphavirus , Encephalitis Virus, Eastern Equine , Horses , Animals , Mice , Alphavirus/genetics , Encephalitis Virus, Eastern Equine/genetics , Semliki forest virus/genetics , Lipoproteins, LDL
8.
Trends Immunol ; 45(2): 85-93, 2024 02.
Article in English | MEDLINE | ID: mdl-38135598

ABSTRACT

Only a subset of viruses can productively infect many different host species. Some arthropod-transmitted viruses, such as alphaviruses, can infect invertebrate and vertebrate species including insects, reptiles, birds, and mammals. This broad tropism may be explained by their ability to engage receptors that are conserved across vertebrate and invertebrate classes. Through several genome-wide loss-of-function screens, new alphavirus receptors have been identified, some of which bind to multiple related viruses in different antigenic complexes. Structural analysis has revealed that distinct sites on the alphavirus glycoprotein can mediate receptor binding, which opposes the idea that a single receptor-binding site mediates viral entry. Here, we discuss how different paradigms of receptor engagement on cells might explain the promiscuity of alphaviruses for multiple hosts.


Subject(s)
Alphavirus , Humans , Animals , Alphavirus/metabolism , Virus Replication , Mammals
9.
Cell Rep Med ; 4(12): 101305, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38039973

ABSTRACT

Most neutralizing anti-SARS-CoV-2 monoclonal antibodies (mAbs) target the receptor binding domain (RBD) of the spike (S) protein. Here, we characterize a panel of mAbs targeting the N-terminal domain (NTD) or other non-RBD epitopes of S. A subset of NTD mAbs inhibits SARS-CoV-2 entry at a post-attachment step and avidly binds the surface of infected cells. One neutralizing NTD mAb, SARS2-57, protects K18-hACE2 mice against SARS-CoV-2 infection in an Fc-dependent manner. Structural analysis demonstrates that SARS2-57 engages an antigenic supersite that is remodeled by deletions common to emerging variants. In neutralization escape studies with SARS2-57, this NTD site accumulates mutations, including a similar deletion, but the addition of an anti-RBD mAb prevents such escape. Thus, our study highlights a common strategy of immune evasion by SARS-CoV-2 variants and how targeting spatially distinct epitopes, including those in the NTD, may limit such escape.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Animals , Mice , SARS-CoV-2 , Antibodies, Viral , Epitopes/genetics , Antibodies, Monoclonal
10.
bioRxiv ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014196

ABSTRACT

The very low-density lipoprotein receptor (VLDLR) is comprised of eight LDLR type A (LA) domains and supports entry of distantly related Eastern equine encephalitis (EEEV) and Semliki Forest (SFV) alphaviruses. Here, by resolving multiple cryo-electron microscopy structures of EEEV-VLDLR complexes and performing mutagenesis and functional studies, we show that EEEV uses multiple sites (E1/E2 cleft and E2 A domain) to engage different LA domains simultaneously. However, no single LA domain is necessary or sufficient to support efficient EEEV infection, highlighting complexity in domain usage. Whereas all EEEV strains show conservation of two VLDLR binding sites, the EEEV PE-6 strain and other EEE complex members feature a single amino acid substitution that mediates binding of LA domains to an additional site on the E2 B domain. These structural and functional analyses informed the design of a minimal VLDLR decoy receptor that neutralizes EEEV infection and protects mice from lethal challenge.

11.
Cell ; 186(22): 4818-4833.e25, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37804831

ABSTRACT

MXRA8 is a receptor for chikungunya (CHIKV) and other arthritogenic alphaviruses with mammalian hosts. However, mammalian MXRA8 does not bind to alphaviruses that infect humans and have avian reservoirs. Here, we show that avian, but not mammalian, MXRA8 can act as a receptor for Sindbis, western equine encephalitis (WEEV), and related alphaviruses with avian reservoirs. Structural analysis of duck MXRA8 complexed with WEEV reveals an inverted binding mode compared with mammalian MXRA8 bound to CHIKV. Whereas both domains of mammalian MXRA8 bind CHIKV E1 and E2, only domain 1 of avian MXRA8 engages WEEV E1, and no appreciable contacts are made with WEEV E2. Using these results, we generated a chimeric avian-mammalian MXRA8 decoy-receptor that neutralizes infection of multiple alphaviruses from distinct antigenic groups in vitro and in vivo. Thus, different alphaviruses can bind MXRA8 encoded by different vertebrate classes with distinct engagement modes, which enables development of broad-spectrum inhibitors.


Subject(s)
Alphavirus , Animals , Humans , Chikungunya Fever , Chikungunya virus/chemistry , Mammals , Receptors, Virus/metabolism
13.
Chemistry ; 29(50): e202301322, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37317647

ABSTRACT

Herein, a new tellurium and mercury containing mercuraazametallamacrocycle has been prepared via (2+2) condensation of bis(o-aminophenyl)telluride and bis(o-formylphenyl)mercury(II). The isolated bright yellow solid of mercuraazametallamacrocycle has adopted unsymmetrical figure-of-eight conformation in the crystal structure. To study the metallophilic interactions between closed shell metal ions, the macrocyclic ligand has been treated with two equiv. of AgOTf (OTf=trifluoromethansulfonate) and AgBF4 , which afforded greenish-yellow bimetallic silver complexes. The isolated silver complexes displayed intramolecular Hg⋅⋅⋅Ag, Te⋅⋅⋅Ag interactions as well as intermolecular Hg⋅⋅⋅Hg interactions and formed an extended 1D molecular chain by directing six atoms to interact as TeII ⋅⋅⋅AgI ⋅⋅⋅HgII ⋅⋅⋅HgII ⋅⋅⋅AgI ⋅⋅⋅TeII in a non linear fashion. The Hg⋅⋅⋅Ag, Te⋅⋅⋅Ag interactions have also been studied in solution by 199 Hg, 125 Te NMR spectroscopy, absorption, and emission spectroscopy. In DFT calculations, the Atom in Molecule (AIM) analysis, non-covalent interactions (NCI), natural bonding orbital (NBO) analysis strongly supported for experimental evidences and revealed that the intermolecular Hg⋅⋅⋅Hg interaction is stronger than the intramolecular Hg⋅⋅⋅Ag interactions.

14.
Sci Transl Med ; 15(696): eade8273, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37196061

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes epidemics of acute and chronic musculoskeletal disease. Here, we analyzed the human B cell response to a CHIKV-like particle-adjuvanted vaccine (PXVX0317) from samples obtained from a phase 2 clinical trial in humans (NCT03483961). Immunization with PXVX0317 induced high levels of neutralizing antibody in serum against CHIKV and circulating antigen-specific B cells up to 6 months after immunization. Monoclonal antibodies (mAbs) generated from peripheral blood B cells of three PXVX0317-vaccinated individuals on day 57 after immunization potently neutralized CHIKV infection, and a subset of these inhibited multiple related arthritogenic alphaviruses. Epitope mapping and cryo-electron microscopy defined two broadly neutralizing mAbs that uniquely bind to the apex of the B domain of the E2 glycoprotein. These results demonstrate the inhibitory breadth and activity of the human B cell response induced by the PXVX0317 vaccine against CHIKV and potentially other related alphaviruses.


Subject(s)
Chikungunya Fever , Chikungunya virus , Vaccines, Virus-Like Particle , Animals , Humans , Chikungunya virus/physiology , Chikungunya Fever/prevention & control , Cryoelectron Microscopy , Antibodies, Viral , Antibodies, Neutralizing , Antibodies, Monoclonal/therapeutic use
15.
Dalton Trans ; 52(1): 159-174, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36475549

ABSTRACT

Selenium-derived electrocatalysts have been well explored for electrocatalytic hydrogen evolution reactions to mimic hydrogenase-like activity; however, the stability of these synthetic mimics is yet to be enhanced. In this study, we report the synthesis and characterization of a series of 1,10-phenanthroline-cobalt(II) phenolate selenoether complexes using 1,10-phenanthroline and 6-nitro-1,10-phenanthroline-Co(II)-dichloride and substituted bis-selenophenolate ligands. The synthesized cobalt(II) phenolate selenoether complexes have been characterized by CHN analysis, mass spectrometry, single crystal XRD, and UV-visible absorption spectroscopy. These complexes show electrocatalytic proton reduction from acetic acid at an overpotential of 0.45-0.56 V vs. Fc+/Fc and surpass previously reported selenium and sulfur-containing electrocatalysts. Furthermore, gas analysis from control potential electrolysis confirms that the cobalt(II) selenoethers act as electrocatalysts to produce H2 with a faradaic efficiency of 43-83% and show a turnover number of 3.24-58.60 molcat-1. The hydrogen evolution reaction (HER) was probed using deuterated acetic acid, which demonstrates an inverse kinetic isotopic effect (KIE) and is consistent with the formation of metal hydride intermediates. Furthermore, control experiments (post-dip analysis and multiple CV studies) have been performed to support the catalysis being due to a homogeneous process. Acid titration using UV-visible spectroscopy reveals that protonation is the prior step for electrocatalysis and assists in the formation of a cobalt hydride intermediate, which upon reaction with a proton generates hydrogen gas.


Subject(s)
Hydrogenase , Selenium , Protons , Hydrogenase/chemistry , Cobalt/chemistry , Hydrogen/chemistry
16.
Clin Chem ; 68(2): 372-373, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-36103295
17.
Chem Commun (Camb) ; 58(50): 7050-7053, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35647756

ABSTRACT

A one pot Cu(I)-assisted synthetic methodology has been developed for the preparation of biologically important C2-symmetric spirodiaza, benzyloxy and benzoxytelluranes from 2-bromo-N-aryl benzamides, benzyl alcohols, and benzoic acids by using the tellurium dianion (Te2-) under base-free conditions. Furthermore, C-C coupled biaryl 1,1'-diamides have been prepared by using an excess of Na2Te under the same reaction conditions. The synthesized spirodiazatelluranes served as a potent catalyst for the reduction of H2O2 and nitro-Michael reactions.


Subject(s)
Copper , Tellurium , Catalysis , Hydrogen Peroxide , Ions
18.
Cell Rep Med ; 3(6): 100653, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35688161

ABSTRACT

Individuals with primary antibody deficiency (PAD) syndromes have poor humoral immune responses requiring immunoglobulin replacement therapy. We followed individuals with PAD after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination by evaluating their immunoglobulin replacement products and serum for anti-spike binding, Fcγ receptor (FcγR) binding, and neutralizing activities. The immunoglobulin replacement products tested have low anti-spike and receptor-binding domain (RBD) titers and neutralizing activity. In coronavirus disease 2019 (COVID-19)-naive individuals with PAD, anti-spike and RBD titers increase after mRNA vaccination but wane by 90 days. Those vaccinated after SARS-CoV-2 infection develop higher and more sustained responses comparable with healthy donors. Most vaccinated individuals with PAD have serum-neutralizing antibody titers above an estimated correlate of protection against ancestral SARS-CoV-2 and Delta virus but not against Omicron virus, although this is improved by boosting. Thus, some immunoglobulin replacement products likely have limited protective activity, and immunization and boosting of individuals with PAD with mRNA vaccines should confer at least short-term immunity against SARS-CoV-2 variants, including Omicron.


Subject(s)
COVID-19 , Immunologic Deficiency Syndromes , Viral Vaccines , Antibody Formation , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Vaccines, Synthetic , Viral Vaccines/genetics , mRNA Vaccines
19.
Immunity ; 55(7): 1200-1215.e6, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35637103

ABSTRACT

Soon after activation, CD4+ T cells are segregated into BCL6+ follicular helper (Tfh) and BCL6- effector (Teff) T cells. Here, we explored how these subsets are maintained during chronic antigen stimulation using the mouse chronic LCMV infection model. Using single cell-transcriptomic and epigenomic analyses, we identified a population of PD-1+ TCF-1+ CD4+ T cells with memory-like features. TCR clonal tracing and adoptive transfer experiments demonstrated that these cells have self-renewal capacity and continue to give rise to both Teff and Tfh cells, thus functioning as progenitor cells. Conditional deletion experiments showed Bcl6-dependent development of these progenitors, which were essential for sustaining antigen-specific CD4+ T cell responses to chronic infection. An analogous CD4+ T cell population developed in draining lymph nodes in response to tumors. Our study reveals the heterogeneity and plasticity of CD4+ T cells during persistent antigen exposure and highlights their population dynamics through a stable, bipotent intermediate state.


Subject(s)
Antigens , T-Lymphocytes, Helper-Inducer , Adoptive Transfer , Animals , Cell Differentiation , Mice , Proto-Oncogene Proteins c-bcl-6/genetics , Stem Cells
20.
J Genet ; 1012022.
Article in English | MEDLINE | ID: mdl-35129135

ABSTRACT

The apocarotenoids play a vital role in plant growth and development process, especially strigolactones, which can induce rooting and help in the interaction with symbiotic microbes in plants. They also act as colorants, antioxidants, hormones, signalling components, scent/aroma constituents and chromophores. In silico approaches are valuable in reducing the complexity regarding gene networks in plants that help to develop new biotechnological and bioinformatics tactics in crop improvement programmes. An in silico comparative genomic analysis of the key enzymes encoding genes involved in apocarotenoid biosynthesis in cassava was carried out using template plants such as arabidopsis, tomato, potato and sweet potato. Forty carotenoid genes were identified, and the nucleotide sequences were subjected to various regulatory sequence analyses such as transcription factor prediction, CpG island analysis, microRNA regulatory analysis and promotor sequence analysis. The corresponding protein sequences were subjected to domain/motif analysis and phylogenetic analysis. The expression profile of apocarotenoid genes in cassava were generated and subcellular localization prediction was done to identify the distribution of the proteins. The results indicated that the apocarotenoid protein domains were conserved in template plants and cassava. Eighteen transcription factors like MYB, BBR-BPC, bHLH and NAC were associated with the identified carotenoid genes in cassava. The apocarotenoid genes were found to be expressed in all the major parts of the plants. These genes were distributed in 17 of 18 cassava chromosomes and the third one contained maximum number of genes. MiRNA regulatory analysis identified three microRNAs, namely miR159a, miR171b and miR396a which were significantly associated with carotenoid biosynthesis in cassava and the pathway was reconstructed by incorporating the above information. A better understanding of the genes and pathway associated with carotenoid biosynthesis in cassava would be helpful in the breeding programme to develop improved carotenoid rich varieties.


Subject(s)
Manihot , Carotenoids/metabolism , Gene Expression Regulation, Plant , Gene Regulatory Networks , Manihot/genetics , Manihot/metabolism , Phylogeny , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...