Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Entropy (Basel) ; 25(9)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37761623

ABSTRACT

Over the past three decades, describing the reality surrounding us using the language of complex networks has become very useful and therefore popular. One of the most important features, especially of real networks, is their complexity, which often manifests itself in a fractal or even multifractal structure. As a generalization of fractal analysis, the multifractal analysis of complex networks is a useful tool for identifying and quantitatively describing the spatial hierarchy of both theoretical and numerical fractal patterns. Nowadays, there are many methods of multifractal analysis. However, all these methods take into account only the fact of connection between nodes (and eventually the weight of edges) and do not take into account the real positions (coordinates) of nodes in space. However, intuition suggests that the geometry of network nodes' position should have a significant impact on the true fractal structure. Many networks identified in nature (e.g., air connection networks, energy networks, social networks, mountain ridge networks, networks of neurones in the brain, and street networks) have their own often unique and characteristic geometry, which is not taken into account in the identification process of multifractality in commonly used methods. In this paper, we propose a multifractal network analysis method that takes into account both connections between nodes and the location coordinates of nodes (network geometry). We show the results for different geometrical variants of the same network and reveal that this method, contrary to the commonly used method, is sensitive to changes in network geometry. We also carry out tests for synthetic as well as real-world networks.

2.
Entropy (Basel) ; 22(5)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-33286281

ABSTRACT

Many networks generated by nature have two generic properties: they are formed in the process of preferential attachment and they are scale-free. Considering these features, by interfering with mechanism of the preferential attachment, we propose a generalisation of the Barabási-Albert model-the 'Fractional Preferential Attachment' (FPA) scale-free network model-that generates networks with time-independent degree distributions p ( k ) ∼ k - γ with degree exponent 2 < γ ≤ 3 (where γ = 3 corresponds to the typical value of the BA model). In the FPA model, the element controlling the network properties is the f parameter, where f ∈ ( 0 , 1 〉 . Depending on the different values of f parameter, we study the statistical properties of the numerically generated networks. We investigate the topological properties of FPA networks such as degree distribution, degree correlation (network assortativity), clustering coefficient, average node degree, network diameter, average shortest path length and features of fractality. We compare the obtained values with the results for various synthetic and real-world networks. It is found that, depending on f, the FPA model generates networks with parameters similar to the real-world networks. Furthermore, it is shown that f parameter has a significant impact on, among others, degree distribution and degree correlation of generated networks. Therefore, the FPA scale-free network model can be an interesting alternative to existing network models. In addition, it turns out that, regardless of the value of f, FPA networks are not fractal.

3.
BMC Bioinformatics ; 16 Suppl 10: S2, 2015.
Article in English | MEDLINE | ID: mdl-26202570

ABSTRACT

BACKGROUND: Since their introduction in 2009, the BioNLP Shared Task events have been instrumental in advancing the development of methods and resources for the automatic extraction of information from the biomedical literature. In this paper, we present the Cancer Genetics (CG) and Pathway Curation (PC) tasks, two event extraction tasks introduced in the BioNLP Shared Task 2013. The CG task focuses on cancer, emphasizing the extraction of physiological and pathological processes at various levels of biological organization, and the PC task targets reactions relevant to the development of biomolecular pathway models, defining its extraction targets on the basis of established pathway representations and ontologies. RESULTS: Six groups participated in the CG task and two groups in the PC task, together applying a wide range of extraction approaches including both established state-of-the-art systems and newly introduced extraction methods. The best-performing systems achieved F-scores of 55% on the CG task and 53% on the PC task, demonstrating a level of performance comparable to the best results achieved in similar previously proposed tasks. CONCLUSIONS: The results indicate that existing event extraction technology can generalize to meet the novel challenges represented by the CG and PC task settings, suggesting that extraction methods are capable of supporting the construction of knowledge bases on the molecular mechanisms of cancer and the curation of biomolecular pathway models. The CG and PC tasks continue as open challenges for all interested parties, with data, tools and resources available from the shared task homepage.


Subject(s)
Gene Regulatory Networks , Genes , Information Storage and Retrieval , Knowledge Bases , Models, Theoretical , Neoplasms/genetics , Neoplasms/pathology , Humans , Natural Language Processing
4.
J Cheminform ; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track): S2, 2015.
Article in English | MEDLINE | ID: mdl-25810773

ABSTRACT

The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family, formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been generated as well. We propose a standard for required minimum information about entity annotations for the construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/.

5.
J Cheminform ; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track): S6, 2015.
Article in English | MEDLINE | ID: mdl-25810777

ABSTRACT

BACKGROUND: The development of robust methods for chemical named entity recognition, a challenging natural language processing task, was previously hindered by the lack of publicly available, large-scale, gold standard corpora. The recent public release of a large chemical entity-annotated corpus as a resource for the CHEMDNER track of the Fourth BioCreative Challenge Evaluation (BioCreative IV) workshop greatly alleviated this problem and allowed us to develop a conditional random fields-based chemical entity recogniser. In order to optimise its performance, we introduced customisations in various aspects of our solution. These include the selection of specialised pre-processing analytics, the incorporation of chemistry knowledge-rich features in the training and application of the statistical model, and the addition of post-processing rules. RESULTS: Our evaluation shows that optimal performance is obtained when our customisations are integrated into the chemical entity recogniser. When its performance is compared with that of state-of-the-art methods, under comparable experimental settings, our solution achieves competitive advantage. We also show that our recogniser that uses a model trained on the CHEMDNER corpus is suitable for recognising names in a wide range of corpora, consistently outperforming two popular chemical NER tools. CONCLUSION: The contributions resulting from this work are two-fold. Firstly, we present the details of a chemical entity recognition methodology that has demonstrated performance at a competitive, if not superior, level as that of state-of-the-art methods. Secondly, the developed suite of solutions has been made publicly available as a configurable workflow in the interoperable text mining workbench Argo. This allows interested users to conveniently apply and evaluate our solutions in the context of other chemical text mining tasks.

6.
J Biomed Semantics ; 6: 8, 2015.
Article in English | MEDLINE | ID: mdl-25789153

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a life-threatening lung disorder whose recent prevalence has led to an increasing burden on public healthcare. Phenotypic information in electronic clinical records is essential in providing suitable personalised treatment to patients with COPD. However, as phenotypes are often "hidden" within free text in clinical records, clinicians could benefit from text mining systems that facilitate their prompt recognition. This paper reports on a semi-automatic methodology for producing a corpus that can ultimately support the development of text mining tools that, in turn, will expedite the process of identifying groups of COPD patients. METHODS: A corpus of 30 full-text papers was formed based on selection criteria informed by the expertise of COPD specialists. We developed an annotation scheme that is aimed at producing fine-grained, expressive and computable COPD annotations without burdening our curators with a highly complicated task. This was implemented in the Argo platform by means of a semi-automatic annotation workflow that integrates several text mining tools, including a graphical user interface for marking up documents. RESULTS: When evaluated using gold standard (i.e., manually validated) annotations, the semi-automatic workflow was shown to obtain a micro-averaged F-score of 45.70% (with relaxed matching). Utilising the gold standard data to train new concept recognisers, we demonstrated that our corpus, although still a work in progress, can foster the development of significantly better performing COPD phenotype extractors. CONCLUSIONS: We describe in this work the means by which we aim to eventually support the process of COPD phenotype curation, i.e., by the application of various text mining tools integrated into an annotation workflow. Although the corpus being described is still under development, our results thus far are encouraging and show great potential in stimulating the development of further automatic COPD phenotype extractors.

7.
Article in English | MEDLINE | ID: mdl-25037308

ABSTRACT

Biocuration activities have been broadly categorized into the selection of relevant documents, the annotation of biological concepts of interest and identification of interactions between the concepts. Text mining has been shown to have a potential to significantly reduce the effort of biocurators in all the three activities, and various semi-automatic methodologies have been integrated into curation pipelines to support them. We investigate the suitability of Argo, a workbench for building text-mining solutions with the use of a rich graphical user interface, for the process of biocuration. Central to Argo are customizable workflows that users compose by arranging available elementary analytics to form task-specific processing units. A built-in manual annotation editor is the single most used biocuration tool of the workbench, as it allows users to create annotations directly in text, as well as modify or delete annotations created by automatic processing components. Apart from syntactic and semantic analytics, the ever-growing library of components includes several data readers and consumers that support well-established as well as emerging data interchange formats such as XMI, RDF and BioC, which facilitate the interoperability of Argo with other platforms or resources. To validate the suitability of Argo for curation activities, we participated in the BioCreative IV challenge whose purpose was to evaluate Web-based systems addressing user-defined biocuration tasks. Argo proved to have the edge over other systems in terms of flexibility of defining biocuration tasks. As expected, the versatility of the workbench inevitably lengthened the time the curators spent on learning the system before taking on the task, which may have affected the usability of Argo. The participation in the challenge gave us an opportunity to gather valuable feedback and identify areas of improvement, some of which have already been introduced. Database URL: http://argo.nactem.ac.uk.


Subject(s)
Data Curation/methods , Data Mining/methods , Internet , Software , Humans , Molecular Sequence Annotation , Time Factors , User-Computer Interface
8.
Article in English | MEDLINE | ID: mdl-24980129

ABSTRACT

BioC is a new simple XML format for sharing biomedical text and annotations and libraries to read and write that format. This promotes the development of interoperable tools for natural language processing (NLP) of biomedical text. The interoperability track at the BioCreative IV workshop featured contributions using or highlighting the BioC format. These contributions included additional implementations of BioC, many new corpora in the format, biomedical NLP tools consuming and producing the format and online services using the format. The ease of use, broad support and rapidly growing number of tools demonstrate the need for and value of the BioC format. Database URL: http://bioc.sourceforge.net/.


Subject(s)
Computational Biology , Data Mining , Natural Language Processing , Software , Biomedical Research , Database Management Systems , Databases, Factual , Internet
9.
Article in English | MEDLINE | ID: mdl-25006225

ABSTRACT

Web services have become a popular means of interconnecting solutions for processing a body of scientific literature. This has fuelled research on high-level data exchange formats suitable for a given domain and ensuring the interoperability of Web services. In this article, we focus on the biological domain and consider four interoperability formats, BioC, BioNLP, XMI and RDF, that represent domain-specific and generic representations and include well-established as well as emerging specifications. We use the formats in the context of customizable Web services created in our Web-based, text-mining workbench Argo that features an ever-growing library of elementary analytics and capabilities to build and deploy Web services straight from a convenient graphical user interface. We demonstrate a 2-fold customization of Web services: by building task-specific processing pipelines from a repository of available analytics, and by configuring services to accept and produce a combination of input and output data interchange formats. We provide qualitative evaluation of the formats as well as quantitative evaluation of automatic analytics. The latter was carried out as part of our participation in the fourth edition of the BioCreative challenge. Our analytics built into Web services for recognizing biochemical concepts in BioC collections achieved the highest combined scores out of 10 participating teams. Database URL: http://argo.nactem.ac.uk.


Subject(s)
Biomedical Research , Data Mining/methods , Databases, Factual , Internet , Publications , Software , Computational Biology , Molecular Sequence Annotation , PubMed , User-Computer Interface , Workflow
10.
Bioinformatics ; 29(13): i44-52, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23813008

ABSTRACT

MOTIVATION: To create, verify and maintain pathway models, curators must discover and assess knowledge distributed over the vast body of biological literature. Methods supporting these tasks must understand both the pathway model representations and the natural language in the literature. These methods should identify and order documents by relevance to any given pathway reaction. No existing system has addressed all aspects of this challenge. METHOD: We present novel methods for associating pathway model reactions with relevant publications. Our approach extracts the reactions directly from the models and then turns them into queries for three text mining-based MEDLINE literature search systems. These queries are executed, and the resulting documents are combined and ranked according to their relevance to the reactions of interest. We manually annotate document-reaction pairs with the relevance of the document to the reaction and use this annotation to study several ranking methods, using various heuristic and machine-learning approaches. RESULTS: Our evaluation shows that the annotated document-reaction pairs can be used to create a rule-based document ranking system, and that machine learning can be used to rank documents by their relevance to pathway reactions. We find that a Support Vector Machine-based system outperforms several baselines and matches the performance of the rule-based system. The success of the query extraction and ranking methods are used to update our existing pathway search system, PathText. AVAILABILITY: An online demonstration of PathText 2 and the annotated corpus are available for research purposes at http://www.nactem.ac.uk/pathtext2/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Biochemical Phenomena , Data Mining/methods , Algorithms , Artificial Intelligence , MEDLINE , Support Vector Machine
11.
BMC Bioinformatics ; 13 Suppl 11: S2, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22759456

ABSTRACT

We present the preparation, resources, results and analysis of three tasks of the BioNLP Shared Task 2011: the main tasks on Infectious Diseases (ID) and Epigenetics and Post-translational Modifications (EPI), and the supporting task on Entity Relations (REL). The two main tasks represent extensions of the event extraction model introduced in the BioNLP Shared Task 2009 (ST'09) to two new areas of biomedical scientific literature, each motivated by the needs of specific biocuration tasks. The ID task concerns the molecular mechanisms of infection, virulence and resistance, focusing in particular on the functions of a class of signaling systems that are ubiquitous in bacteria. The EPI task is dedicated to the extraction of statements regarding chemical modifications of DNA and proteins, with particular emphasis on changes relating to the epigenetic control of gene expression. By contrast to these two application-oriented main tasks, the REL task seeks to support extraction in general by separating challenges relating to part-of relations into a subproblem that can be addressed by independent systems. Seven groups participated in each of the two main tasks and four groups in the supporting task. The participating systems indicated advances in the capability of event extraction methods and demonstrated generalization in many aspects: from abstracts to full texts, from previously considered subdomains to new ones, and from the ST'09 extraction targets to other entities and events. The highest performance achieved in the supporting task REL, 58% F-score, is broadly comparable with levels reported for other relation extraction tasks. For the ID task, the highest-performing system achieved 56% F-score, comparable to the state-of-the-art performance at the established ST'09 task. In the EPI task, the best result was 53% F-score for the full set of extraction targets and 69% F-score for a reduced set of core extraction targets, approaching a level of performance sufficient for user-facing applications. In this study, we extend on previously reported results and perform further analyses of the outputs of the participating systems. We place specific emphasis on aspects of system performance relating to real-world applicability, considering alternate evaluation metrics and performing additional manual analysis of system outputs. We further demonstrate that the strengths of extraction systems can be combined to improve on the performance achieved by any system in isolation. The manually annotated corpora, supporting resources, and evaluation tools for all tasks are available from http://www.bionlp-st.org and the tasks continue as open challenges for all interested parties.


Subject(s)
Epigenomics , Information Storage and Retrieval , Natural Language Processing , Protein Processing, Post-Translational , Proteins/metabolism , Communicable Diseases , DNA Methylation , Histone Code , Lipoproteins , Proteins/genetics
12.
Database (Oxford) ; 2012: bas010, 2012.
Article in English | MEDLINE | ID: mdl-22434844

ABSTRACT

Curation of biomedical literature is often supported by the automatic analysis of textual content that generally involves a sequence of individual processing components. Text mining (TM) has been used to enhance the process of manual biocuration, but has been focused on specific databases and tasks rather than an environment integrating TM tools into the curation pipeline, catering for a variety of tasks, types of information and applications. Processing components usually come from different sources and often lack interoperability. The well established Unstructured Information Management Architecture is a framework that addresses interoperability by defining common data structures and interfaces. However, most of the efforts are targeted towards software developers and are not suitable for curators, or are otherwise inconvenient to use on a higher level of abstraction. To overcome these issues we introduce Argo, an interoperable, integrative, interactive and collaborative system for text analysis with a convenient graphic user interface to ease the development of processing workflows and boost productivity in labour-intensive manual curation. Robust, scalable text analytics follow a modular approach, adopting component modules for distinct levels of text analysis. The user interface is available entirely through a web browser that saves the user from going through often complicated and platform-dependent installation procedures. Argo comes with a predefined set of processing components commonly used in text analysis, while giving the users the ability to deposit their own components. The system accommodates various areas and levels of user expertise, from TM and computational linguistics to ontology-based curation. One of the key functionalities of Argo is its ability to seamlessly incorporate user-interactive components, such as manual annotation editors, into otherwise completely automatic pipelines. As a use case, we demonstrate the functionality of an in-built manual annotation editor that is well suited for in-text corpus annotation tasks. DATABASE URL: http://www.nactem.ac.uk/Argo.


Subject(s)
Data Mining/methods , Software , Biomedical Research , Databases, Factual , User-Computer Interface
13.
BMC Bioinformatics ; 12 Suppl 8: S3, 2011 Oct 03.
Article in English | MEDLINE | ID: mdl-22151929

ABSTRACT

BACKGROUND: Determining usefulness of biomedical text mining systems requires realistic task definition and data selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics. The BioCreative III Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address aspects including how the end user would oversee the generated output, for instance by providing ranked results, textual evidence for human interpretation or measuring time savings by using automated systems. Detecting articles describing complex biological events like PPIs was addressed in the Article Classification Task (ACT), where participants were asked to implement tools for detecting PPI-describing abstracts. Therefore the BCIII-ACT corpus was provided, which includes a training, development and test set of over 12,000 PPI relevant and non-relevant PubMed abstracts labeled manually by domain experts and recording also the human classification times. The Interaction Method Task (IMT) went beyond abstracts and required mining for associations between more than 3,500 full text articles and interaction detection method ontology concepts that had been applied to detect the PPIs reported in them. RESULTS: A total of 11 teams participated in at least one of the two PPI tasks (10 in ACT and 8 in the IMT) and a total of 62 persons were involved either as participants or in preparing data sets/evaluating these tasks. Per task, each team was allowed to submit five runs offline and another five online via the BioCreative Meta-Server. From the 52 runs submitted for the ACT, the highest Matthew's Correlation Coefficient (MCC) score measured was 0.55 at an accuracy of 89% and the best AUC iP/R was 68%. Most ACT teams explored machine learning methods, some of them also used lexical resources like MeSH terms, PSI-MI concepts or particular lists of verbs and nouns, some integrated NER approaches. For the IMT, a total of 42 runs were evaluated by comparing systems against manually generated annotations done by curators from the BioGRID and MINT databases. The highest AUC iP/R achieved by any run was 53%, the best MCC score 0.55. In case of competitive systems with an acceptable recall (above 35%) the macro-averaged precision ranged between 50% and 80%, with a maximum F-Score of 55%. CONCLUSIONS: The results of the ACT task of BioCreative III indicate that classification of large unbalanced article collections reflecting the real class imbalance is still challenging. Nevertheless, text-mining tools that report ranked lists of relevant articles for manual selection can potentially reduce the time needed to identify half of the relevant articles to less than 1/4 of the time when compared to unranked results. Detecting associations between full text articles and interaction detection method PSI-MI terms (IMT) is more difficult than might be anticipated. This is due to the variability of method term mentions, errors resulting from pre-processing of articles provided as PDF files, and the heterogeneity and different granularity of method term concepts encountered in the ontology. However, combining the sophisticated techniques developed by the participants with supporting evidence strings derived from the articles for human interpretation could result in practical modules for biological annotation workflows.


Subject(s)
Algorithms , Data Mining , Proteins/metabolism , Animals , Databases, Protein , Humans , Periodicals as Topic , PubMed
14.
BMC Bioinformatics ; 12 Suppl 8: S11, 2011 Oct 03.
Article in English | MEDLINE | ID: mdl-22151769

ABSTRACT

BACKGROUND: The selection of relevant articles for curation, and linking those articles to experimental techniques confirming the findings became one of the primary subjects of the recent BioCreative III contest. The contest's Protein-Protein Interaction (PPI) task consisted of two sub-tasks: Article Classification Task (ACT) and Interaction Method Task (IMT). ACT aimed to automatically select relevant documents for PPI curation, whereas the goal of IMT was to recognise the methods used in experiments for identifying the interactions in full-text articles. RESULTS: We proposed and compared several classification-based methods for both tasks, employing rich contextual features as well as features extracted from external knowledge sources. For IMT, a new method that classifies pair-wise relations between every text phrase and candidate interaction method obtained promising results with an F1 score of 64.49%, as tested on the task's development dataset. We also explored ways to combine this new approach and more conventional, multi-label document classification methods. For ACT, our classifiers exploited automatically detected named entities and other linguistic information. The evaluation results on the BioCreative III PPI test datasets showed that our systems were very competitive: one of our IMT methods yielded the best performance among all participants, as measured by F1 score, Matthew's Correlation Coefficient and AUC iP/R; whereas for ACT, our best classifier was ranked second as measured by AUC iP/R, and also competitive according to other metrics. CONCLUSIONS: Our novel approach that converts the multi-class, multi-label classification problem to a binary classification problem showed much promise in IMT. Nevertheless, on the test dataset the best performance was achieved by taking the union of the output of this method and that of a multi-class, multi-label document classifier, which indicates that the two types of systems complement each other in terms of recall. For ACT, our system exploited a rich set of features and also obtained encouraging results. We examined the features with respect to their contributions to the classification results, and concluded that contextual words surrounding named entities, as well as the MeSH headings associated with the documents were among the main contributors to the performance.


Subject(s)
Data Mining , Proteomics , Humans , Periodicals as Topic , Protein Interaction Mapping , Proteins/metabolism
15.
Bioinformation ; 1(9): 360-2, 2007 Mar 20.
Article in English | MEDLINE | ID: mdl-17597921

ABSTRACT

UNLABELLED: The GENIA ontology is a taxonomy that was developed as a result of manual annotation of a subset of MEDLINE, the GENIA corpus. Both the ontology and corpus have been used as a benchmark to test and develop biological information extraction tools. Recent work shows, however, that there is a demand for a more comprehensive ontology that would go along with the corpus. We propose a complete OWL ontology built on top of the GENIA ontology utilizing the GENIA corpus. The proposed ontology includes elements such as the original taxonomy of categories, biological entities as individuals, relations between individuals using verbs and verb nominalizations as object properties, and links to the UMLS Metathesaurus concepts. AVAILABILITY: http://www.ece.ualberta.ca/~rrak/ontology/xGENIA/

16.
IEEE Eng Med Biol Mag ; 26(2): 47-55, 2007.
Article in English | MEDLINE | ID: mdl-17441608

ABSTRACT

The specific characteristic of classification of medical documents from the MEDLINE database is that each document is assigned to more than one category, which requires a system for multilabel classification. Another major challenge was to develop a scalable method capable of dealing with hundreds of thousand of documents. We proposed a novel system for automated classification of MEDLINE documents to MeSH keywords based on the recently developed data mining algorithm called ACRI, which was modified to accommodate multilabel classification. Five different classification configurations in conjunction with different methods of measuring classification quality were proposed and tested. The extensive experimental comparison showed superiority of methods based on reoccurrence of words in an article over nonrecurrent-based associative classification. The achieved relatively high value of macro F1 (46%) demonstrates the high quality of the proposed system for this challenging dataset. Accuracy of the proposed classifier, defined as the ratio of the sum of TP and TN examples to the total number of examples, reached 90%. Three scenarios were proposed based on the performed tests and different possible objectives. If a goal is to classify the largest number of documents, a configuration that maximizes micro F1 should be chosen. On the other hand, if a system is to work well for categories with a small number of documents, a configuration that maximizes macro F1 is more suitable. A tradeoff can be obtained by using a configuration that optimizes the average between macro and micro F1.


Subject(s)
Abstracting and Indexing/methods , Artificial Intelligence , MEDLINE , Medical Subject Headings , Natural Language Processing , Periodicals as Topic/classification , Terminology as Topic , Information Storage and Retrieval/methods , Pattern Recognition, Automated/methods
SELECTION OF CITATIONS
SEARCH DETAIL