Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1813: 125-148, 2018.
Article in English | MEDLINE | ID: mdl-30097865

ABSTRACT

The amoeba Dictyostelium discoideum is a single-cell organism that can undergo a simple developmental program, making it an excellent model to study the molecular mechanisms of cell motility, signal transduction, and cell-type differentiation. A variety of human genes that are absent or show limited conservation in other invertebrate models have been identified in this organism. This includes ADP-ribosyltransferases, also known as poly-ADP-ribose polymerases (PARPs), a family of proteins that catalyze the addition of single or poly-ADP-ribose moieties onto target proteins. The genetic tractability of Dictyostelium and its relatively simple genome structure makes it possible to disrupt PARP gene combinations, in addition to specific ADP-ribosylation sites at endogenous loci. Together, this makes Dictyostelium an attractive model to assess how ADP-ribosylation regulates a variety of cellular processes including DNA repair, transcription, and cell-type specification. Here we describe a range of techniques to study ADP-ribosylation in Dictyostelium, including analysis of ADP-ribosylation events in vitro and in vivo, in addition to approaches to assess the functional roles of this modification in vivo.


Subject(s)
ADP Ribose Transferases/genetics , ADP-Ribosylation/genetics , Dictyostelium/genetics , Molecular Biology/methods , Cell Differentiation/genetics , Cell Movement/genetics , DNA Repair/genetics , Dictyostelium/metabolism , Humans , Poly Adenosine Diphosphate Ribose/genetics , Signal Transduction
2.
Sci Rep ; 7: 43750, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28252050

ABSTRACT

ADP-ribosyltransferases (ARTs) modify proteins with single units or polymers of ADP-ribose to regulate DNA repair. However, the substrates for these enzymes are ill-defined. For example, although histones are modified by ARTs, the sites on these proteins ADP-ribosylated following DNA damage and the ARTs that catalyse these events are unknown. This, in part, is due to the lack of a eukaryotic model that contains ARTs, in addition to histone genes that can be manipulated to assess ADP-ribosylation events in vivo. Here we exploit the model Dictyostelium to identify site-specific histone ADP-ribosylation events in vivo and define the ARTs that mediate these modifications. Dictyostelium histones are modified in response to DNA double strand breaks (DSBs) in vivo by the ARTs Adprt1a and Adprt2. Adprt1a is a mono-ART that modifies H2BE18 in vitro, although disruption of this site allows ADP-ribosylation at H2BE19. Although redundancy between H2BE18 and H2BE19 ADP-ribosylation is also apparent following DSBs in vivo, by generating a strain with mutations at E18/E19 in the h2b locus we demonstrate these are the principal sites modified by Adprt1a/Adprt2. This identifies DNA damage induced histone mono-ADP-ribosylation sites by specific ARTs in vivo, providing a unique platform to assess how histone ADP-ribosylation regulates DNA repair.


Subject(s)
ADP-Ribosylation , DNA Breaks, Double-Stranded , Histones/metabolism , ADP Ribose Transferases/genetics , ADP Ribose Transferases/metabolism , Adenosine Diphosphate Ribose/metabolism , DNA Repair , Dictyostelium/genetics , Dictyostelium/metabolism , Histones/genetics , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/metabolism
3.
J Cell Sci ; 126(Pt 15): 3452-61, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23750002

ABSTRACT

ADP-ribosylation of proteins at DNA lesions by ADP-ribosyltransferases (ARTs) is an early response to DNA damage. The best defined role of ADP-ribosylation in the DNA damage response is in repair of single strand breaks (SSBs). Recently, we initiated a study of how ADP-ribosylation regulates DNA repair in Dictyostelium and found that two ARTs (Adprt1b and Adprt2) are required for tolerance of cells to SSBs, and a third ART (Adprt1a) promotes nonhomologous end-joining (NHEJ). Here we report that disruption of adprt2 results in accumulation of DNA damage throughout the cell cycle following exposure to agents that induce base damage and DNA SSBs. Although ADP-ribosylation is evident in adprt2(-) cells exposed to methylmethanesulfonate (MMS), disruption of adprt1a and adprt2 in combination abolishes this response and further sensitises cells to this agent, indicating that in the absence of Adprt2, Adprt1a signals MMS-induced DNA lesions to promote resistance of cells to DNA damage. As a consequence of defective signalling of SSBs by Adprt2, Adprt1a is required to assemble NHEJ factors in chromatin, and disruption of the NHEJ pathway in combination with adprt2 increases sensitivity of cells to MMS. Taken together, these data indicate overlapping functions of different ARTs in signalling DNA damage, and illustrate a critical requirement for NHEJ in maintaining cell viability in the absence of an effective SSB response.


Subject(s)
ADP Ribose Transferases/metabolism , DNA Breaks, Single-Stranded , DNA End-Joining Repair , Poly(ADP-ribose) Polymerases/deficiency , ADP Ribose Transferases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Dictyostelium/genetics , Dictyostelium/metabolism , Dictyostelium/physiology , Enterobacter aerogenes/genetics , Enterobacter aerogenes/metabolism , Enterobacter aerogenes/physiology , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Signal Transduction
4.
Article in English | MEDLINE | ID: mdl-21888552

ABSTRACT

Murine DNA methyltransferases Dnmt3a-CD and M.SssI from Spiroplasma methylate cytosines at CpG sites. The role of 6-oxo groups of guanines in DNA methylation by these enzymes has been studied using DNA substrates, which contained 2-aminopurine at different positions. Removal of the 6-oxo group of the guanine located adjacent to the target cytosine in the CpG site dramatically reduces the stability of the methyltransferase-DNA complexes and leads to a significant decrease in the methylation. Apparently, O6 of this guanine is involved in the recognition of CpG sites by the enzymes. Cooperative binding of Dnmt3a-CD to 2-aminopurine-containing DNA and the formation of nonproductive enzyme-substrate complexes were observed.


Subject(s)
2-Aminopurine/metabolism , CpG Islands , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA-Cytosine Methylases/metabolism , DNA/metabolism , Spiroplasma/enzymology , 2-Aminopurine/chemistry , Animals , Base Sequence , DNA/chemistry , DNA Methylation , DNA Methyltransferase 3A , Mice , Nucleic Acid Denaturation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL