Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Ultrasound ; 21(1): 21, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38098064

ABSTRACT

BACKGROUND: Physical activity contributes to changes in cardiac morphology, which are known as "athlete's heart". Therefore, these modifications can be characterized using different imaging modalities such as echocardiography, including Doppler (flow Doppler and Doppler myocardial imaging) and speckle-tracking, along with cardiac magnetic resonance, and cardiac computed tomography. MAIN TEXT: Echocardiography is the most common method for assessing cardiac structure and function in athletes due to its availability, repeatability, versatility, and low cost. It allows the measurement of parameters like left ventricular wall thickness, cavity dimensions, and mass. Left ventricular myocardial strain can be measured by tissue Doppler (using the pulse wave Doppler principle) or speckle tracking echocardiography (using the two-dimensional grayscale B-mode images), which provide information on the deformation of the myocardium. Cardiac magnetic resonance provides a comprehensive evaluation of cardiac morphology and function with superior accuracy compared to echocardiography. With the addition of contrast agents, myocardial state can be characterized. Thus, it is particularly effective in differentiating an athlete's heart from pathological conditions, however, is less accessible and more expensive compared to other techniques. Coronary computed tomography is used to assess coronary artery anatomy and identify anomalies or diseases, but its use is limited due to radiation exposure and cost, making it less suitable for young athletes. A novel approach, hemodynamic forces analysis, uses feature tracking to quantify intraventricular pressure gradients responsible for blood flow. Hemodynamic forces analysis has the potential for studying blood flow within the heart and assessing cardiac function. CONCLUSIONS: In conclusion, each diagnostic technique has its own advantages and limitations for assessing cardiac adaptations in athletes. Examining and comparing the cardiac adaptations resulting from physical activity with the structural cardiac changes identified through different diagnostic modalities is a pivotal focus in the field of sports medicine.


Subject(s)
Cardiomegaly, Exercise-Induced , Humans , Heart/diagnostic imaging , Heart/physiology , Echocardiography , Myocardium/pathology , Heart Ventricles/diagnostic imaging , Athletes
2.
J Mater Sci Mater Med ; 27(1): 19, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26676865

ABSTRACT

With the application of tissue engineering to tissue regeneration, additional new complexes have been made in response to the challenge of cartilage-injury repair. This study was performed to construct a rat precartilaginous stem cells-based scaffold of self-assembling peptides RADA16-I/PLGA-PLL (poly-L-lysine coated PLGA) as extracellular matrix loading the NLS-TAT as a peptide-based carrier for a plasmid DNA containing hTGFß3. After composites were cultured for 1, 2, 3 and 4 weeks, respectively, the results showed that the levels of chondrogenic-related gene expression were higher in the experimental group with and hTGFß3 gene by reverse transcription-polymerase chain reaction, and with higher histochemical and immunohistochemical expression. hTGFß3 protein expression had increased at 4 weeks based on western blot analysis. The results of this study show that a complex may be a suitable scaffold for cartilage repair and offer a strategy for tissue regeneration through the use of tissue engineering.


Subject(s)
Cartilage/growth & development , DNA/administration & dosage , Lactic Acid , Plasmids , Polyglycolic Acid , Polymers , Tissue Scaffolds , Transforming Growth Factor beta3/genetics , Animals , Cartilage/physiology , Cells, Cultured , Humans , Polyesters , Polylactic Acid-Polyglycolic Acid Copolymer , Rats , Regeneration , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...