Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38559214

ABSTRACT

Bacterial microcompartments (BMCs) are protein-bound organelles found in some bacteria which encapsulate enzymes for enhanced catalytic activity. These compartments spatially sequester enzymes within semi-permeable shell proteins, analogous to many membrane-bound organelles. The shell proteins assemble into multimeric tiles; hexamers, trimers, and pentamers, and these tiles self-assemble into larger assemblies with icosahedral symmetry. While icosahedral shells are the predominant form in vivo, the tiles can also form nanoscale cylinders or sheets. The individual multimeric tiles feature central pores that are key to regulating transport across the protein shell. Our primary interest is to quantify pore shape changes in response to alternative component morphologies at the nanoscale. We use molecular modeling tools to develop atomically detailed models for both planar sheets of tiles and curved structures representative of the complete shells found in vivo. Subsequently, these models were animated using classical molecular dynamics simulations. From the resulting trajectories, we analyzed overall structural stability, water accessibility to individual residues, water residence time, and pore geometry for the hexameric and trimeric protein tiles from the Haliangium ochraceum model BMC shell. These exhaustive analyses suggest no substantial variation in pore structure or solvent accessibility between the flat and curved shell geometries. We additionally compare our analysis to hydroxyl radical footprinting data to serve as a check against our simulation results, highlighting specific residues where water molecules are bound for a long time. Although with little variation in morphology or water interaction, we propose that the planar and capsular morphology can be used interchangeably when studying permeability through BMC pores.

2.
Sci Rep ; 14(1): 6119, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38480827

ABSTRACT

Non-invasive methods of detecting radiation exposure show promise to improve upon current approaches to biological dosimetry in ease, speed, and accuracy. Here we developed a pipeline that employs Fourier transform infrared (FTIR) spectroscopy in the mid-infrared spectrum to identify a signature of low dose ionizing radiation exposure in mouse ear pinnae over time. Mice exposed to 0.1 to 2 Gy total body irradiation were repeatedly measured by FTIR at the stratum corneum of the ear pinnae. We found significant discriminative power for all doses and time-points out to 90 days after exposure. Classification accuracy was maximized when testing 14 days after exposure (specificity > 0.9 with a sensitivity threshold of 0.9) and dropped by roughly 30% sensitivity at 90 days. Infrared frequencies point towards biological changes in DNA conformation, lipid oxidation and accumulation and shifts in protein secondary structure. Since only hundreds of samples were used to learn the highly discriminative signature, developing human-relevant diagnostic capabilities is likely feasible and this non-invasive procedure points toward rapid, non-invasive, and reagent-free biodosimetry applications at population scales.


Subject(s)
Radiation Exposure , Radiometry , Humans , Mice , Animals , Spectroscopy, Fourier Transform Infrared , Fourier Analysis , Radiometry/methods , Proteins , Radiation, Ionizing , Radiation Exposure/analysis , Radiation Dosage
3.
Radiat Res ; 200(6): 523-530, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38014573

ABSTRACT

High dose rate radiation has gained considerable interest recently as a possible avenue for increasing the therapeutic window in cancer radiation treatment. The sparing of healthy tissue at high dose rates relative to conventional dose rates, while maintaining tumor control, has been termed the FLASH effect. Although the effect has been validated in animal models using multiple radiation sources, it is not yet well understood. Here, we demonstrate a new experimental platform for quantifying oxidative damage to protein sidechains in solution as a function of radiation dose rate and oxygen availability using liquid chromatography mass spectrometry. Using this reductionist approach, we show that for both X-ray and electron sources, isolated peptides in solution are oxidatively modified to different extents as a function of both dose rate and oxygen availability. Our method provides an experimental platform for exploring the parameter space of the dose rate effect on oxidative changes to proteins in solution.


Subject(s)
Neoplasms , Animals , Oxidative Stress , Peptides , Oxygen , Radiotherapy Dosage
4.
Nanotechnology ; 34(42)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37336203

ABSTRACT

In vivoimaging of protein complexes is a powerful method for understanding the underlying biological function of these key biomolecules. Though the engineering of small, high affinity nanobodies have become more prevalent, the off-rates of these tags may result in incomplete or partial labeling of proteins in live cells. The SpyCatcher003 and SpyTag split protein system allow for irreversible, covalent binding to a short target peptide unlike nanobody-affinity based probes. However, delivering these tags into a cell without disrupting its normal function is a key challenge. Cell penetrating peptides (CPPs) are short peptide sequences that facilitate the transduction of otherwise membrane-impermeable 'cargo' , such as proteins, into cells. Here we report on our efforts to engineer and characterize CPP-SpyCatcher003 fusions as modular imaging probes. We selected three CPPs, CUPID, Pentratin, and pVEC, to engineer fusion protein probes for superresolution microscopy, with the aim to eliminate prior permeabilization treatments that could introduce imaging artifacts. We find that fusing the CPP sequences to SpyCatcher003 resulted in dimer and multimer formation as determined by size exclusion chromatography, dynamic light scattering, and SDS resistant dimers on SDS-PAGE gels. By isolating and labeling the monomeric forms of the engineered protein, we show these constructs retained their ability to bind SpyTag and all three CPP sequences remain membrane active, as assessed by CD spectroscopy in the presence of SDS detergent. Using fluorescence and super resolution Lattice structured illumination microscopy (Lattice SIM) imaging we show that the CPPs did not enhance uptake of SpyCatcher byE. coli,however withCaulobacter crescentuscells, we show that Penetratin, and to a lesser degree CUPID, does enhance uptake. Our results demonstrate the ability of the CPP-SpyCatcher003 to label targets within living cells, providing the groundwork for using split protein systems for targetedin vivoimaging.


Subject(s)
Cell-Penetrating Peptides , Cell-Penetrating Peptides/metabolism , Proteins/metabolism , Biological Transport
5.
Antibodies (Basel) ; 11(4)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36412837

ABSTRACT

Commercial monoclonal antibodies are growing and important components of modern therapies against a multitude of human diseases. Well-known high-resolution structural methods such as protein crystallography are often used to characterize antibody structures and to determine paratope and/or epitope binding regions in order to refine antibody design. However, many standard structural techniques require specialized sample preparation that may perturb antibody structure or require high concentrations or other conditions that are far from the conditions conducive to the accurate determination of antigen binding or kinetics. We describe here in this minireview the relatively new method of hydroxyl radical protein footprinting, a solution-state method that can provide structural and kinetic information on antibodies or antibody-antigen interactions useful for therapeutic antibody design. We provide a brief history of hydroxyl radical footprinting, examples of current implementations, and recent advances in throughput and accessibility.

6.
Commun Biol ; 5(1): 866, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008591

ABSTRACT

X-ray radiolytic labeling uses broadband X-rays for in situ hydroxyl radical labeling to map protein interactions and conformation. High flux density beams are essential to overcome radical scavengers. However, conventional sample delivery environments, such as capillary flow, limit the use of a fully unattenuated focused broadband beam. An alternative is to use a liquid jet, and we have previously demonstrated that use of this form of sample delivery can increase labeling by tenfold at an unfocused X-ray source. Here we report the first use of a liquid jet for automated inline quantitative fluorescence dosage characterization and sample exposure at a high flux density microfocused synchrotron beamline. Our approach enables exposure times in single-digit microseconds while retaining a high level of side-chain labeling. This development significantly boosts the method's overall effectiveness and efficiency, generates high-quality data, and opens up the arena for high throughput and ultrafast time-resolved in situ hydroxyl radical labeling.


Subject(s)
Hydroxyl Radical , Proteins , Fluorescence , Synchrotrons , X-Rays
7.
Chembiochem ; 23(23): e202200333, 2022 12 05.
Article in English | MEDLINE | ID: mdl-35980391

ABSTRACT

Spurred in part by the failure of recent therapeutics targeting amyloid ß plaques in Alzheimer's Disease (AD), attention is increasingly turning to the oligomeric forms of this peptide that form early in the aggregation process. However, while numerous amyloid ß fibril structures have been characterized, primarily by NMR spectroscopy and cryo-EM, obtaining structural information on the low molecular weight forms of amyloid ß that presumably precede and/or seed fibril formation has proved challenging. These transient forms are heterogeneous, and depend heavily on experimental conditions such as buffer, temperature, concentration, and degree of quiescence during measurement. Here, we present the concept for a new approach to delineating structural features of early-stage low molecular weight amyloid ß oligomers, using a solvent accessibility assay in conjunction with simultaneous fluorescence measurements.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/chemistry , Molecular Weight , Amyloid/chemistry , Magnetic Resonance Spectroscopy , Peptide Fragments/chemistry
8.
J Am Chem Soc ; 144(2): 854-861, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34985894

ABSTRACT

Rare-earth elements, which include the lanthanide series, are key components of many clean energy technologies, including wind turbines and photovoltaics. Because most of these 4f metals are at high risk of supply chain disruption, the development of new recovery technologies is necessary to avoid future shortages, which may impact renewable energy production. This paper reports the synthesis of a non-natural biogenic material as a potential platform for bioinspired lanthanide extraction. The biogenic material takes advantage of the atomically precise structure of a 2D crystalline protein lattice with the high lanthanide binding affinity of hydroxypyridinonate chelators. Luminescence titration data demonstrated that the engineered protein layers have affinities for all tested lanthanides in the micromolar-range (dissociation constants) and a higher binding affinity for the lanthanide ions with a smaller ionic radius. Furthermore, competitive titrations confirmed the higher selectivity (up to several orders of magnitude) of the biogenic material for lanthanides compared to other cations commonly found in f-element sources. Lastly, the functionalized protein layers could be reused in several cycles by desorbing the bound metal with citrate solutions. Taken together, these results highlight biogenic materials as promising bioadsorption platforms for the selective binding of lanthanides, with potential applications in the recovery of these critical elements from waste.


Subject(s)
Chelating Agents/chemistry , Metals, Rare Earth/analysis , Proteins/chemistry , Hydrogen-Ion Concentration , Lanthanoid Series Elements/analysis , Lanthanoid Series Elements/isolation & purification , Lanthanoid Series Elements/metabolism , Ligands , Metals, Rare Earth/isolation & purification , Metals, Rare Earth/metabolism , Proteins/metabolism , Pyridines/chemistry , Spectrophotometry
9.
Adv Exp Med Biol ; 1371: 1-10, 2022.
Article in English | MEDLINE | ID: mdl-33963527

ABSTRACT

Carotenoids are ancient pigment molecules that, when associated with proteins, have a tremendous range of functional properties. Unlike most protein prosthetic groups, there are no recognizable primary structure motifs that predict carotenoid binding, hence the structural details of their amino acid interactions in proteins must be worked out empirically. Here we describe our recent efforts to combine complementary biophysical methods to elucidate the precise details of protein-carotenoid interactions in the Orange Carotenoid Protein and its evolutionary antecedents, the Helical Carotenoid Proteins (HCPs), CTD-like carotenoid proteins (CCPs).


Subject(s)
Cyanobacteria , Bacterial Proteins/metabolism , Carotenoids/chemistry , Carotenoids/metabolism , Cyanobacteria/metabolism
10.
J Synchrotron Radiat ; 28(Pt 5): 1333-1342, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34475282

ABSTRACT

In the method of X-ray footprinting mass spectrometry (XFMS), proteins at micromolar concentration in solution are irradiated with a broadband X-ray source, and the resulting hydroxyl radical modifications are characterized using liquid chromatography mass spectrometry to determine sites of solvent accessibility. These data are used to infer structural changes in proteins upon interaction with other proteins, folding, or ligand binding. XFMS is typically performed under aerobic conditions; dissolved molecular oxygen in solution is necessary in many, if not all, the hydroxyl radical modifications that are generally reported. In this study we investigated the result of X-ray induced modifications to three different proteins under aerobic versus low oxygen conditions, and correlated the extent of damage with dose calculations. We observed a concentration-dependent protecting effect at higher protein concentration for a given X-ray dose. For the typical doses used in XFMS experiments there was minimal X-ray induced aggregation and fragmentation, but for higher doses we observed formation of covalent higher molecular weight oligomers, as well as fragmentation, which was affected by the amount of dissolved oxygen in solution. The higher molecular weight products in the form of dimers, trimers, and tetramers were present in all sample preparations, and, upon X-ray irradiation, these oligomers became non-reducible as seen in SDS-PAGE. The results provide an important contribution to the large body of X-ray radiation damage literature in structural biology research, and will specifically help inform the future planning of XFMS, and well as X-ray crystallography and small-angle X-ray scattering experiments.


Subject(s)
Hydroxyl Radical/chemistry , Mass Spectrometry/methods , Protein Footprinting/methods , Proteins/chemistry , Proteins/radiation effects , Oxygen , Protein Conformation , Solutions/chemistry , Synchrotrons , X-Rays
11.
Science ; 370(6523): 1473-1479, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33154106

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters host cells via an interaction between its Spike protein and the host cell receptor angiotensin-converting enzyme 2 (ACE2). By screening a yeast surface-displayed library of synthetic nanobody sequences, we developed nanobodies that disrupt the interaction between Spike and ACE2. Cryo-electron microscopy (cryo-EM) revealed that one nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains locked into their inaccessible down state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains function after aerosolization, lyophilization, and heat treatment, which enables aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Antibody Affinity , Chlorocebus aethiops , Cryoelectron Microscopy , Humans , Neutralization Tests , Protein Binding , Protein Stability , Single-Domain Antibodies/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells
12.
Sci Rep ; 10(1): 15564, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968135

ABSTRACT

The Orange Carotenoid Protein (OCP) is a water-soluble protein that governs photoprotection in many cyanobacteria. The 35 kDa OCP is structurally and functionally modular, consisting of an N-terminal effector domain (NTD) and a C-terminal regulatory domain (CTD); a carotenoid spans the two domains. The CTD is a member of the ubiquitous Nuclear Transport Factor-2 (NTF2) superfamily (pfam02136). With the increasing availability of cyanobacterial genomes, bioinformatic analysis has revealed the existence of a new family of proteins, homologs to the CTD, the C-terminal domain-like carotenoid proteins (CCPs). Here we purify holo-CCP2 directly from cyanobacteria and establish that it natively binds canthaxanthin (CAN). We use small-angle X-ray scattering (SAXS) to characterize the structure of this carotenoprotein in two distinct oligomeric states. A single carotenoid molecule spans the two CCPs in the dimer. Our analysis with X-ray footprinting-mass spectrometry (XFMS) identifies critical residues for carotenoid binding that likely contribute to the extreme red shift (ca. 80 nm) of the absorption maximum of the carotenoid bound by the CCP2 dimer and a further 10 nm shift in the tetramer form. These data provide the first structural description of carotenoid binding by a protein consisting of only an NTF2 domain.


Subject(s)
Bacterial Proteins/ultrastructure , Canthaxanthin/chemistry , Cyanobacteria/ultrastructure , Nucleocytoplasmic Transport Proteins/ultrastructure , Bacterial Proteins/chemistry , Crystallography, X-Ray , Cyanobacteria/chemistry , Nucleocytoplasmic Transport Proteins/chemistry , Nucleocytoplasmic Transport Proteins/genetics , Protein Binding/drug effects , Protein Domains/genetics , Scattering, Small Angle
13.
Biophys J ; 119(6): 1108-1122, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32891187

ABSTRACT

Phosphorylation of Escherichia coli CheY protein transduces chemoreceptor stimulation to a highly cooperative flagellar motor response. CheY binds to the N-terminal peptide of the FliM motor protein (FliMN). Constitutively active D13K-Y106W CheY has been an important tool for motor physiology. The crystal structures of CheY and CheY ⋅ FliMN with and without D13K-Y106W have shown FliMN-bound CheY contains features of both active and inactive states. We used molecular dynamics (MD) simulations to characterize the CheY conformational landscape accessed by FliMN and D13K-Y106W. Mutual information measures identified the central features of the long-range CheY allosteric network between D57 phosphorylation site and the FliMN interface, namely the closure of the α4-ß4 hinge and inward rotation of Y- or W106 with W58. We used hydroxy-radical foot printing with mass spectroscopy (XFMS) to track the solvent accessibility of these and other side chains. The solution XFMS oxidation rate correlated with the solvent-accessible area of the crystal structures. The protection of allosteric relay side chains reported by XFMS confirmed the intermediate conformation of the native CheY ⋅ FliMN complex, the inactive state of free D13K-Y106W CheY, and the MD-based network architecture. We extended the MD analysis to determine temporal coupling and energetics during activation. Coupled aromatic residue rotation was a graded rather than a binary switch, with Y- or W106 side-chain burial correlated with increased FliMN affinity. Activation entrained CheY fold stabilization to FliMN affinity. The CheY network could be partitioned into four dynamically coordinated sectors. Residue substitutions mapped to sectors around D57 or the FliMN interface according to phenotype. FliMN increased sector size and interactions. These sectors fused between the substituted K13-W106 residues to organize a tightly packed core and novel surfaces that may bind additional sites to explain the cooperative motor response. The community maps provide a more complete description of CheY priming than proposed thus far.


Subject(s)
Bacterial Proteins , Escherichia coli , Bacterial Proteins/metabolism , Chemotaxis , Escherichia coli/metabolism , Escherichia coli Proteins , Flagella/metabolism , Membrane Proteins/metabolism , Methyl-Accepting Chemotaxis Proteins , Phosphorylation , Protein Binding
14.
bioRxiv ; 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32817938

ABSTRACT

Without an effective prophylactic solution, infections from SARS-CoV-2 continue to rise worldwide with devastating health and economic costs. SARS-CoV-2 gains entry into host cells via an interaction between its Spike protein and the host cell receptor angiotensin converting enzyme 2 (ACE2). Disruption of this interaction confers potent neutralization of viral entry, providing an avenue for vaccine design and for therapeutic antibodies. Here, we develop single-domain antibodies (nanobodies) that potently disrupt the interaction between the SARS-CoV-2 Spike and ACE2. By screening a yeast surface-displayed library of synthetic nanobody sequences, we identified a panel of nanobodies that bind to multiple epitopes on Spike and block ACE2 interaction via two distinct mechanisms. Cryogenic electron microscopy (cryo-EM) revealed that one exceptionally stable nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains (RBDs) locked into their inaccessible down-state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for SARS-CoV-2 Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains stability and function after aerosolization, lyophilization, and heat treatment. These properties may enable aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia, promising to yield a widely deployable, patient-friendly prophylactic and/or early infection therapeutic agent to stem the worst pandemic in a century.

15.
Biochim Biophys Acta Bioenerg ; 1861(2): 148120, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31734194

ABSTRACT

The orange carotenoid protein (OCP) is a structurally and functionally modular photoactive protein involved in cyanobacterial photoprotection. Recently, based on bioinformatic analysis and phylogenetic relationships, new families of OCP have been described, OCP2 and OCPx. The first characterization of the OCP2 showed both faster photoconversion and back-conversion, and lower fluorescence quenching of phycobilisomes relative to the well-characterized OCP1. Moreover, OCP2 is not regulated by the fluorescence recovery protein (FRP). In this work, we present a comprehensive study combining ultrafast spectroscopy and structural analysis to compare the photoactivation mechanisms of OCP1 and OCP2 from Tolypothrix PCC 7601. We show that despite significant differences in their functional characteristics, the spectroscopic properties of OCP1 and OCP2 are comparable. This indicates that the OCP functionality is not directly related to the spectroscopic properties of the bound carotenoid. In addition, the structural analysis by X-ray footprinting reveals that, overall, OCP1 and OCP2 have grossly the same photoactivation mechanism. However, the OCP2 is less reactive to radiolytic labeling, suggesting that the protein is less flexible than OCP1. This observation could explain fast photoconversion of OCP2.


Subject(s)
Bacterial Proteins/chemistry , Cyanobacteria/chemistry , Phycobilisomes/chemistry , Spectrometry, Fluorescence
16.
Anal Chem ; 92(1): 1565-1573, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31790200

ABSTRACT

The method of X-ray footprinting and mass spectrometry (XFMS) on large protein assemblies and membrane protein samples requires high flux density to overcome the hydroxyl radical scavenging reactions produced by the buffer constituents and the total protein content. Previously, we successfully developed microsecond XFMS using microfluidic capillary flow and a microfocused broadband X-ray source at the Advanced Light Source synchrotron beamlines, but the excessive radiation damage incurred when using capillaries prevented the full usage of a high-flux density beam. Here we present another significant advance for the XFMS method: the instrumentation of a liquid injection jet to deliver container free samples to the X-ray beam. Our preliminary experiments with a liquid jet at a bending magnet X-ray beamline demonstrate the feasibility of the approach and show a significant improvement in the effective dose for both the Alexa fluorescence assay and protein samples compared to conventional capillary flow methods. The combination of precisely controlled high dose delivery, shorter exposure times, and elimination of radiation damage due to capillary effects significantly increases the signal quality of the hydroxyl radical modification products and the dose-response data. This new approach is the first application of container free sample handling for XFMS and opens up the method for even further advances, such as high-quality microsecond time-resolved XFMS studies.


Subject(s)
Hydroxyl Radical/analysis , Membrane Proteins/analysis , Protein Footprinting , Synchrotrons , Fluorescent Dyes/chemistry , X-Rays
17.
J Biol Chem ; 294(36): 13327-13335, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31320477

ABSTRACT

Regulated ion diffusion across biological membranes is vital for cell function. In a nanoscale ion channel, the active role of discrete water molecules in modulating hydrodynamic behaviors of individual ions is poorly understood because of the technical challenge of tracking water molecules through the channel. Here we report the results of a hydroxyl radical footprinting analysis of the zinc-selective channel ZIPB from the Gram-negative bacterium, Bordetella bronchiseptica Irradiating ZIPB by microsecond X-ray pulses activated water molecules to form covalent hydroxyl radical adducts at nearby residues, which were identified by bottom-up proteomics to detect residues that interact either with zinc or water in response to zinc binding. We found a series of residues exhibiting reciprocal changes in water accessibility attributed to alternating zinc and water binding. Mapping these residues to the previously reported crystal structure of ZIPB, we identified a water-reactive pathway that superimposed on a zinc translocation pathway consisting of two binuclear metal centers and an interim zinc-binding site. The cotranslocation of zinc and water suggested that pore-lining residues undergo a mode switch between zinc coordination and water binding to confer zinc mobility. The unprecedented details of water-mediated zinc transport identified here highlight an essential role of solvated waters in driving zinc coordination dynamics and transmembrane crossing.


Subject(s)
Bordetella bronchiseptica/metabolism , Cation Transport Proteins/metabolism , Water/metabolism , Zinc/metabolism , Biological Transport , Bordetella bronchiseptica/chemistry , Cation Transport Proteins/chemistry , Diffusion , Water/chemistry , Zinc/chemistry
18.
J Biol Chem ; 294(22): 8848-8860, 2019 05 31.
Article in English | MEDLINE | ID: mdl-30979724

ABSTRACT

In cyanobacterial photoprotection, the orange carotenoid protein (OCP) is photoactivated under excess light conditions and binds to the light-harvesting antenna, triggering the dissipation of captured light energy. In low light, the OCP relaxes to the native state, a process that is accelerated in the presence of fluorescence recovery protein (FRP). Despite the importance of the OCP in photoprotection, the precise mechanism of photoactivation by this protein is not well-understood. Using time-resolved X-ray-mediated in situ hydroxyl radical labeling, we probed real-time solvent accessibility (SA) changes at key OCP residues during photoactivation and relaxation. We observed a biphasic photoactivation process in which carotenoid migration preceded domain dissociation. We also observed a multiphasic relaxation process, with collapsed domain association preceding the final conformational rearrangement of the carotenoid. Using steady-state hydroxyl radical labeling, we identified sites of interaction between the FRP and OCP. In combination, the findings in this study provide molecular-level insights into the factors driving structural changes during OCP-mediated photoprotection in cyanobacteria, and furnish a basis for understanding the physiological relevance of the FRP-mediated relaxation process.


Subject(s)
Bacterial Proteins/metabolism , Carotenoids/metabolism , Bacterial Proteins/chemistry , Carotenoids/chemistry , Cyanobacteria/metabolism , Hydroxyl Radical/chemistry , Molecular Docking Simulation , Protein Structure, Tertiary , X-Rays
19.
Plant Physiol ; 179(1): 156-167, 2019 01.
Article in English | MEDLINE | ID: mdl-30389783

ABSTRACT

Bacterial microcompartments (BMCs) encapsulate enzymes within a selectively permeable, proteinaceous shell. Carboxysomes are BMCs containing ribulose-1,5-bisphosphate carboxylase oxygenase and carbonic anhydrase that enhance carbon dioxide fixation. The carboxysome shell consists of three structurally characterized protein types, each named after the oligomer they form: BMC-H (hexamer), BMC-P (pentamer), and BMC-T (trimer). These three protein types form cyclic homooligomers with pores at the center of symmetry that enable metabolite transport across the shell. Carboxysome shells contain multiple BMC-H paralogs, each with distinctly conserved residues surrounding the pore, which are assumed to be associated with specific metabolites. We studied the regulation of ß-carboxysome shell composition by investigating the BMC-H genes ccmK3 and ccmK4 situated in a locus remote from other carboxysome genes. We made single and double deletion mutants of ccmK3 and ccmK4 in Synechococcus elongatus PCC7942 and show that, unlike CcmK3, CcmK4 is necessary for optimal growth. In contrast to other CcmK proteins, CcmK3 does not form homohexamers; instead CcmK3 forms heterohexamers with CcmK4 with a 1:2 stoichiometry. The CcmK3-CcmK4 heterohexamers form stacked dodecamers in a pH-dependent manner. Our results indicate that CcmK3-CcmK4 heterohexamers potentially expand the range of permeability properties of metabolite channels in carboxysome shells. Moreover, the observed facultative formation of dodecamers in solution suggests that carboxysome shell permeability may be dynamically attenuated by "capping" facet-embedded hexamers with a second hexamer. Because ß-carboxysomes are obligately expressed, heterohexamer formation and capping could provide a rapid and reversible means to alter metabolite flux across the shell in response to environmental/growth conditions.


Subject(s)
Bacterial Proteins/physiology , Synechococcus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Deletion , Models, Molecular , Molecular Dynamics Simulation , Permeability , Synechococcus/genetics
20.
Protein Pept Lett ; 26(1): 70-75, 2019.
Article in English | MEDLINE | ID: mdl-30484401

ABSTRACT

BACKGROUND: Synchrotron hydroxyl radical footprinting is a relatively new structural method used to investigate structural features and conformational changes of nucleic acids and proteins in the solution state. It was originally developed at the National Synchrotron Light Source at Brookhaven National Laboratory in the late nineties, and more recently, has been established at the Advanced Light Source at Lawrence Berkeley National Laboratory. The instrumentation for this method is an active area of development, and includes methods to increase dose to the samples while implementing high-throughput sample delivery methods. CONCLUSION: Improving instrumentation to irradiate biological samples in real time using a sample droplet generator and inline fluorescence monitoring to rapidly determine dose response curves for samples will significantly increase the range of biological problems that can be investigated using synchrotron hydroxyl radical footprinting.


Subject(s)
Crystallography, X-Ray , Hydroxyl Radical , Synchrotrons , Crystallography, X-Ray/instrumentation , Crystallography, X-Ray/methods , Crystallography, X-Ray/trends , Fluorescent Dyes/chemistry , Hydroxyl Radical/analysis , Hydroxyl Radical/chemistry , Microfluidic Analytical Techniques , Protein Conformation , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...