Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Mar Syst ; 2302022 Jun.
Article in English | MEDLINE | ID: mdl-36160121

ABSTRACT

Worldwide, warming ocean temperatures have contributed to extreme harmful algal bloom events and shifts in phytoplankton species composition. In 2016 in the Gulf of Maine (GOM), an unprecedented Pseudo-nitzschia bloom led to the first domoic-acid induced shellfishery closures in the region. Potential links between climate change, warming temperatures, and the GOM Pseudo-nitzschia assemblage, however, remain unexplored. In this study, a global climate change projection previously downscaled to 7-km resolution for the Northwest Atlantic was further refined with a 1-3-km resolution simulation of the GOM to investigate the effects of climate change on HAB dynamics. A 25-year time slice of projected conditions at the end of the 21st century (2073-2097) was compared to a 25-year hindcast of contemporary ocean conditions (1994-2018) and analyzed for changes to GOM inflows, transport, and Pseudo-nitzschia australis growth potential. On average, climate change is predicted to lead to increased temperatures, decreased salinity, and increased stratification in the GOM, with the largest changes occurring in the late summer. Inflows from the Scotian Shelf are projected to increase, and alongshore transport in the Eastern Maine Coastal Current is projected to intensify. Increasing ocean temperatures will likely make P. australis growth conditions less favorable in the southern and western GOM but improve P. australis growth conditions in the eastern GOM, including a later growing season in the fall, and a longer growing season in the spring. Combined, these changes suggest that P. australis blooms in the eastern GOM could intensify in the 21st century, and that the overall Pseudo-nitzschia species assemblage might shift to warmer-adapted species such as P. plurisecta or other Pseudo-nitzschia species that may be introduced.

2.
Cont Shelf Res ; 2282021 Oct 01.
Article in English | MEDLINE | ID: mdl-36213213

ABSTRACT

In 2016, an unprecedented Pseudo-nitzschia australis bloom in the Gulf of Maine led to the first shellfishery closures due to domoic acid in the region's history. In this paper, potential introduction routes of P. australis are explored through observations, a hydrodynamic model, and a Lagrangian particle tracking model. Based on particle tracking experiments, the most likely source of P. australis to the Gulf of Maine was the Scotian Shelf. However, in 2016, connectivity between the Scotian Shelf and the bloom region was not significantly different from the other years between 2012 and 2019, nor were temperature conditions more favorable for P. australis growth. Observations indicated changes on the Scotian Shelf in 2016 preceded the introduction of P. australis: increased bottom salinity and decreased surface salinity. The increased bottom salinity on the shelf may be linked to anomalously saline water observed near the coast of Maine in 2016 via transport through Northeast Channel. The changes in upstream water mass properties may be related to the introduction of P. australis, and could be the result of either increased influence of the Labrador Current or increased outflow from the Gulf of St. Lawrence. The ultimate source of P. australis remains unknown, although the species has previously been observed in the eastern North Atlantic, and connectivity across the ocean is possible via a subpolar route. Continued and increased monitoring is warranted to track interannual Pseudo-nitzschia persistence in the Gulf of Maine, and sampling on the Scotian Shelf should be conducted to map upstream P. australis populations.

3.
Harmful Algae ; 91: 101729, 2020 01.
Article in English | MEDLINE | ID: mdl-32057346

ABSTRACT

This review assesses harmful algal bloom (HAB) modeling in the context of climate change, examining modeling methodologies that are currently being used, approaches for representing climate processes, and time scales of HAB model projections. Statistical models are most commonly used for near-term HAB forecasting and resource management, but statistical models are not well suited for longer-term projections as forcing conditions diverge from past observations. Process-based models are more complex, difficult to parameterize, and require extensive calibration, but can mechanistically project HAB response under changing forcing conditions. Nevertheless, process-based models remain prone to failure if key processes emerge with climate change that were not identified in model development based on historical observations. We review recent studies on modeling HABs and their response to climate change, and the various statistical and process-based approaches used to link global climate model projections and potential HAB response. We also make several recommendations for how the field can move forward: 1) use process-based models to explicitly represent key physical and biological factors in HAB development, including evaluating HAB response to climate change in the context of the broader ecosystem; 2) quantify and convey model uncertainty using ensemble approaches and scenario planning; 3) use robust approaches to downscale global climate model results to the coastal regions that are most impacted by HABs; and 4) evaluate HAB models with long-term observations, which are critical for assessing long-term trends associated with climate change and far too limited in extent.


Subject(s)
Ecosystem , Harmful Algal Bloom , Climate Change , Forecasting
4.
Harmful Algae ; 88: 101656, 2019 09.
Article in English | MEDLINE | ID: mdl-31582158

ABSTRACT

The toxic diatom genus Pseudo-nitzschia is a growing presence in the Gulf of Maine (GOM), where regionally unprecedented levels of domoic acid (DA) in 2016 led to the first Amnesic Shellfish Poisoning closures in the region. However, factors driving GOM Pseudo-nitzschia dynamics, DA concentrations, and the 2016 event are unclear. Water samples were collected at the surface and at depth in offshore transects in summer 2012, 2014, and 2015, and fall 2016, and a weekly time series of surface water samples was collected in 2013. Temperature and salinity data were obtained from NERACOOS buoys and measurements during sample collection. Samples were processed for particulate DA (pDA), dissolved nutrients (nitrate, ammonium, silicic acid, and phosphate), and cellular abundance. Species composition was estimated via Automated Ribosomal Intergenic Spacer Analysis (ARISA), a semi-quantitative DNA finger-printing tool. Pseudo-nitzschia biogeography was consistent in the years 2012, 2014, and 2015, with greater Pseudo-nitzschia cell abundance and P. plurisecta dominance in low-salinity inshore samples, and lower Pseudo-nitzschia cell abundance and P. delicatissima and P. seriata dominance in high-salinity offshore samples. During the 2016 event, pDA concentrations were an order of magnitude higher than in previous years, and inshore-offshore contrasts in biogeography were weak, with P. australis present in every sample. Patterns in temporal and spatial variability confirm that pDA increases with the abundance and the cellular DA of Pseudo-nitzschia species, but was not correlated with any one environmental factor. The greater pDA in 2016 was caused by P. australis - the observation of which is unprecedented in the region - and may have been exacerbated by low residual silicic acid. The novel presence of P. australis may be due to local growth conditions, the introduction of a population with an anomalous water mass, or both factors. A definitive cause of the 2016 bloom remains unknown, and continued DA monitoring in the GOM is warranted.


Subject(s)
Diatoms , Shellfish Poisoning , Humans , Maine , Nitrates , Seasons
5.
Ann Rev Mar Sci ; 10: 371-395, 2018 01 03.
Article in English | MEDLINE | ID: mdl-28977760

ABSTRACT

Estuarine turbidity maxima (ETMs) are generated by a large suite of hydrodynamic and sediment dynamic processes, leading to longitudinal convergence of cross-sectionally integrated and tidally averaged transport of cohesive and noncohesive suspended particulate matter (SPM). The relative importance of these processes for SPM trapping varies substantially among estuaries depending on topography, fluvial and tidal forcing, and SPM composition. The high-frequency dynamics of ETMs are constrained by interactions with the low-frequency dynamics of the bottom pool of easily erodible sediments. Here, we use a transport decomposition to present processes that lead to convergent SPM transport, and review trapping mechanisms that lead to ETMs at the landward limit of the salt intrusion, in the freshwater zone, at topographic transitions, and by lateral processes within the cross section. We use model simulations of example estuaries to demonstrate the complex concurrence of ETM formation mechanisms. We also discuss how changes in SPM trapping mechanisms, often caused by direct human interference, can lead to the generation of hyperturbid estuaries.


Subject(s)
Environmental Monitoring/methods , Estuaries , Geologic Sediments/chemistry , Particulate Matter/analysis , Water Pollutants, Chemical/analysis , Humans , Hydrodynamics , Water Movements
6.
Limnol Oceanogr ; 62(6): 2829-2849, 2017 11.
Article in English | MEDLINE | ID: mdl-29263558

ABSTRACT

New resting cyst production is crucial for the survival of many microbial eukaryotes including phytoplankton that cause harmful algal blooms. Production in situ has previously been estimated through sediment trap deployments, but here was instead assessed through estimation of the total number of planktonic cells and new resting cysts produced by a localized, inshore bloom of Alexandrium catenella, a dinoflagellate that is a globally important cause of paralytic shellfish poisoning. Our approach utilizes high frequency, automated water monitoring, weekly observation of new cyst production, and pre- and post-bloom spatial surveys of total resting cyst abundance. Through this approach, new cyst recruitment within the study area was shown to account for at least 10.9% ± 2.6% (SE) of the bloom's decline, ∼ 5× greater than reported from comparable, sediment trap based studies. The observed distribution and timing of new cyst recruitment indicate that: (1) planozygotes, the immediate precursor to cysts in the life cycle, migrate nearer to the water surface than other planktonic stages and (2) encystment occurs after planozygote settlement on bottom sediments. Near surface localization by planozygotes explains the ephemerality of red surface water discoloration by A. catenella blooms, and also enhances the dispersal of new cysts. Following settlement, bioturbation and perhaps active swimming promote sediment infiltration by planozygotes, reducing the extent of cyst redistribution between blooms. The concerted nature of bloom sexual induction, especially in the context of an observed upper limit to A. catenella bloom intensities and heightened susceptibility of planozygotes to the parasite Amoebophrya, is also discussed.

7.
Chemosphere ; 169: 450-459, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27889511

ABSTRACT

Using dated sediment cores, polychlorinated biphenyl (PCB) congener concentrations in the New York/New Jersey Harbor and Lower Hudson River were investigated using Positive Matrix Factorization. Of the seven factors resolved, six represent Aroclors in various stages of weathering. Factor 1 resembles Aroclor 1242 and is consistent with the Upper Hudson River PCB signal associated with the General Electric capacitor plants near Hudson Falls, NY. This factor is the dominant source of PCBs in the upper layers of the sediment core collected in the Lower Hudson River. Factor 2 (Aroclor 1248) was the dominant PCB component in the core depths corresponding with around 1970, but it has decreased more rapidly since its peak (estimated half-life of about 5 years) than factor 1 (half-life of about 14 years), suggesting that PCBs from the Upper Hudson have delayed the recovery of the Harbor from PCB contamination. The seventh factor, comprised of PCBs 206, 208, and 209, was greatest in concentration in the deepest core slices and is thought be associated with inadvertent production of PCBs during the manufacture of titanium dioxide and/or with foundry waxes containing PCBs. PCB 11, which is thought to be associated with the use of color organic pigments, was examined separately and was detected in sediment throughout the Harbor. Its maximum concentrations generally occurred at the same depth as the maximum total PCB concentrations, suggesting that PCB 11 concentrations decreased after the mid-1970s.


Subject(s)
Geologic Sediments/chemistry , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Aroclors/analysis , Environmental Monitoring , Half-Life , History, 20th Century , History, 21st Century , Humans , New Jersey , New York , Rivers
8.
Estuaries Coast ; 39(2): 311-332, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27721675

ABSTRACT

Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a "theory of everything" for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.

9.
PeerJ ; 4: e1770, 2016.
Article in English | MEDLINE | ID: mdl-27114859

ABSTRACT

A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount's elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4-10 m above the bottom. The high density aggregations were constrained to 355-385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m(2), and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects.

10.
Estuaries Coast ; 38(6): 2240-2258, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26692827

ABSTRACT

A highly resolved, 3-d model of hydrodynamics and Alexandrium fundyense in an estuarine embayment has been developed to investigate the physical and biological controls on a recurrent harmful algal bloom. Nauset estuary on Cape Cod (MA, USA) consists of three salt ponds connected to the ocean through a shallow marsh and network of tidal channels. The model is evaluated using quantitative skill metrics against observations of physical and biological conditions during three spring blooms. The A. fundyense model is based on prior model applications for the nearby Gulf of Maine, but notable modifications were made to be consistent with the Nauset observations. The dominant factors controlling the A. fundyense bloom in Nauset were the water temperature, which regulates organism growth rates, and the efficient retention of cells due to bathymetric constraints, stratification, and cell behavior (diel vertical migration). Spring-neap variability in exchange altered residence times, but for cell retention to be substantially longer than the cell doubling time required both active vertical migration and stratification that inhibits mixing of cells into the surface layer by wind and tidal currents. Unlike in the Gulf of Maine, the model results were relatively insensitive to cyst distributions or germination rates. Instead, in Nauset, high apparent rates of vegetative cell division by retained populations dictated bloom development. Cyst germination occurred earlier in the year than in the Gulf of Maine, suggesting that Nauset cysts have different controls on germination timing. The model results were relatively insensitive to nutrient concentrations, due to eutrophic conditions in the highly impacted estuary or due to limitations in the spatial and temporal resolution of nutrient sampling. Cell loss rates were inferred to be extremely low during the growth phase of the bloom, but increased rapidly during the final phase due to processes that remain uncertain. The validated model allows a quantitative assessment of the factors that contribute to the development of a recurrent harmful algal bloom and provides a framework for assessing similarly impacted coastal systems.

11.
Limnol Oceanogr ; 60(6): 2059-2078, 2015 Nov.
Article in English | MEDLINE | ID: mdl-27667858

ABSTRACT

Transitions between life cycle stages by the harmful dinoflagellate Alexandrium fundyense are critical for the initiation and termination of its blooms. To quantify these transitions in a single population, an Imaging FlowCytobot (IFCB), was deployed in Salt Pond (Eastham, Massachusetts), a small, tidally flushed kettle pond that hosts near annual, localized A. fundyense blooms. Machine-based image classifiers differentiating A. fundyense life cycle stages were developed and results were compared to manually corrected IFCB samples, manual microscopy-based estimates of A. fundyense abundance, previously published data describing prevalence of the parasite Amoebophrya, and a continuous culture of A. fundyense infected with Amoebophrya. In Salt Pond, a development phase of sustained vegetative division lasted approximately 3 weeks and was followed by a rapid and near complete conversion to small, gamete cells. The gametic period (∼3 d) coincided with a spike in the frequency of fusing gametes (up to 5% of A. fundyense images) and was followed by a zygotic phase (∼4 d) during which cell sizes returned to their normal range but cell division and diel vertical migration ceased. Cell division during bloom development was strongly phased, enabling estimation of daily rates of division, which were more than twice those predicted from batch cultures grown at similar temperatures in replete medium. Data from the Salt Pond deployment provide the first continuous record of an A. fundyense population through its complete bloom cycle and demonstrate growth and sexual induction rates much higher than are typically observed in culture.

12.
Environ Sci Technol ; 49(1): 451-8, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25479559

ABSTRACT

Culturable enterococci and a suite of environmental variables were collected during a predominantly dry summer at a beach impacted by nonpoint source pollution. These data were used to evaluate sands as a source of enterococci to nearshore waters, and to assess the relationship between environmental factors and dry-weather enterococci abundance. Best-fit multiple linear regressions used environmental variables to explain more than half of the observed variation in enterococci in water and dry sands. Notably, during dry weather the abundance of enterococci in dry sands at the mean high-tide line was significantly positively related to sand moisture content (ranging from <1-4%), and the daily mean ENT in water could be predicted by a linear regression with turbidity alone. Temperature was also positively correlated with ENT abundance in this study, which may indicate an important role of seasonal warming in temperate regions. Inundation by spring tides was the primary rewetting mechanism that sustained culturable enterococci populations in high-tide sands. Tidal forcing modulated the abundance of enterococci in the water, as both turbidity and enterococci were elevated during ebb and flood tides. The probability of samples violating the single-sample maximum was significantly greater when collected during periods with increased tidal range: spring ebb and flood tides. Tidal forcing also affected groundwater mixing zones, mobilizing enterococci from sand to water. These data show that routine monitoring programs using discrete enterococci measurements may be biased by tides and other environmental factors, providing a flawed basis for beach closure decisions.


Subject(s)
Bathing Beaches , Enterococcus , Environmental Microbiology , Water Quality , Animals , Dogs , Groundwater , Humans , Seasons , Silicon Dioxide , Weather
13.
Limnol Oceanogr ; 59(4): 1112-1126, 2014.
Article in English | MEDLINE | ID: mdl-25419003

ABSTRACT

Observations of harmful algal blooms (HABs) of the dinoflagellate Alexandrium fundyense in an estuary over multiple years were used to assess drivers of their spatial and temporal variability. Nauset Estuary on Cape Cod, Massachusetts has a recurrent, self-seeding A. fundyense population that produces paralytic shellfish poisoning toxins and leads to nearly annual closure to shellfishing. Weekly surveys of the entire estuary were made in 3 of 4 consecutive years, with surveys of a subembayment during the intervening year. Major A. fundyense blooms were observed all 4 years, with maximum concentrations >106 cells L-1. Concentrations were greatest in three salt ponds at the distal edges of the estuary. The bloom timing varied among the salt ponds and among years, although the blooms had similar durations and maximum cell concentrations. Nutrient concentrations did not correlate with the growth of the bloom, but differences in water temperature among years and ponds were significant. Net growth rates inferred from the surveys were similar to those from laboratory experiments, and increased linearly with temperature. A growing degree day calculation was used to account for effects of interannual variability and spatial gradients in water temperature on population development. The approach collapsed variability in the timing of bloom onset, development, and termination across years and among ponds, suggesting that this relatively simple metric could be used as an early-warning indicator for HABs in Nauset and similar areas with localized, self-seeding blooms.

14.
Harmful Algae ; 12: 26-38, 2011 Dec.
Article in English | MEDLINE | ID: mdl-28690476

ABSTRACT

Paralytic Shellfish Poisoning (PSP) toxins are annually recurrent along the Massachusetts coastline (USA), which includes many small embayments and salt ponds. Among these is the Nauset Marsh System (NMS), which has a long history of PSP toxicity. Little is known, however, about the bloom dynamics of the causative organism Alexandrium fundyense within that economically and socially important system. The overall goal of this work was to characterize the distribution and dynamics of A. fundyense blooms within the NMS and adjacent coastal waters by documenting the distribution and abundance of resting cysts and vegetative cells. Cysts were found predominantly in three drowned kettle holes or salt ponds at the distal ends of the NMS - Salt Pond, Mill Pond, and Town Cove. The central region of the NMS had a much lower concentration of cysts. Two types of A. fundyense blooms were observed. One originated entirely within the estuary, seeded by cysts in the three seedbeds. These blooms developed independently of each other and of the A. fundyense population observed in adjacent coastal waters outside the NMS. The temporal development of the blooms was different in the three salt ponds, with initiation differing by as much as 30 days. These differences do not appear to reflect the initial cyst abundances in these locations, and may simply result from higher cell retention and higher nutrient concentrations in Mill Pond, the first site to bloom. Germination of cysts accounted for a small percentage of the peak cell densities in the ponds, so population size was influenced more by the factors affecting growth than by cyst abundance. Subsurface cell aggregation (surface avoidance) limited advection of the vegetative A. fundyense cells out of the salt ponds through the shallow inlet channels. Thus, the upper reaches of the NMS are at the greatest risk for PSP since the highest cyst abundances and cell concentrations were found there. After these localized blooms in the salt ponds peaked and declined, a second, late season bloom occurred within the central portions of the NMS. The timing of this second bloom relative to those within the salt ponds and the coastal circulation patterns at that time strongly suggest that those cells originated from a regional A. fundyense bloom in the Gulf of Maine, delivered to the central marsh from coastal waters outside the NMS through Nauset Inlet. These results will guide policy decisions about water quality as well as shellfish monitoring and utilization within the NMS and highlight the potential for "surgical" closures of shellfish during PSP events, leaving some areas open for harvesting while others are closed.

15.
J Phys Oceanogr ; 39: 915-933, 2009 Apr.
Article in English | MEDLINE | ID: mdl-28979050

ABSTRACT

The temporal response of the length of a partially-mixed estuary to changes in freshwater discharge, Qf , and tidal amplitude, UT , is studied using a 108 day time series collected along the length of the Hudson River estuary in the spring and summer of 2004 and a long-term (13.4 year) record of Qf , UT , and near-surface salinity. When Qf was moderately high, the tidally-averaged length of the estuary, L5, here defined as the distance from the mouth to the up-estuary location where the vertically-averaged salinity is five psu, fluctuated by more than 47 km over the spring-neap cycle, ranging from 28 km to >75 km. During low flow periods, L5 varied very little over the spring-neap cycle and approached a steady length. The response is quantified and compared to predictions of a linearized model derived from the global estuarine salt balance. The model is forced by fluctuations in Qf and UT relative to average discharge, Qo, and tidal amplitude, UTo, and predicts the linear response time scale, τ, and the steady-state length, Lo, for average forcing. Two vertical mixing schemes are considered, in which a) mixing is proportional to UT and b) dependence of mixing on stratification is also parameterized. Based on least-squares fits between L5 and estuary length predicted by the model, estimated τ varied by an order of magnitude from a period of high average discharge (Qo = 750 m3s-1, τ = 4.2 days) to a period of low discharge (Qo = 170 m3s-1, τ = 40.4 days). Over the range of observed discharge, Lo ∝ Qo-0.30±0.03, consistent with the theoretical scaling for an estuary whose landward salt flux is driven by vertical estuarine exchange circulation. Estimated τ was proportional to the discharge advection time scale (LoA/Qo, where A is the cross-sectional area of the estuary). However, τ was three to four times larger than the theoretical prediction. The model with stratification dependent mixing predicted variations in L5 with higher skill than the model with mixing proportional to UT . This model provides insight into the time dependent response of a partially-stratified estuary to changes in forcing and explains the strong dependence of the amplitude of the spring-neap response on freshwater discharge. However, the utility of the linear model is limited because it assumes a uniform channel and because the underlying dynamics are nonlinear and the forcing, Qf and UT , can undergo large amplitude variations. River discharge, in particular, can vary by over an order of magnitude over timescales comparable to or shorter than the response timescale of the estuary.

16.
Cont Shelf Res ; 27(10-11): 1510-1527, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-21499572

ABSTRACT

Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.

SELECTION OF CITATIONS
SEARCH DETAIL
...