Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35050108

ABSTRACT

Human skin works as a barrier against the adverse effects of environmental agents, including ultraviolet radiation (UVR). Exposure to UVR is associated with a variety of harmful effects on the skin, and it is one of the most common health concerns. Solar UVR constitutes the major etiological factor in the development of cutaneous malignancy. However, more than 90% of skin cancer cases could be avoided with appropriate preventive measures such as regular sunscreen use. Plants, constantly irradiated by sunlight, are able to synthesize specialized molecules to fight against UVR damage. Phenolic compounds, alkaloids and carotenoids constitute the major plant secondary metabolism compounds with relevant UVR protection activities. Hence, plants are an important source of molecules used to avoid UVR damage, reduce photoaging and prevent skin cancers and related illnesses. Due to its significance, we reviewed the main plant secondary metabolites related to UVR protection and its reported mechanisms. In addition, we summarized the research in Mexican plants related to UV protection. We presented the most studied Mexican plants and the photoprotective molecules found in them. Additionally, we analyzed the studies conducted to elucidate the mechanism of photoprotection of those molecules and their potential use as ingredients in sunscreen formulas.

2.
Appl Microbiol Biotechnol ; 105(6): 2377-2384, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33616698

ABSTRACT

Cancer treatments continue to have many disadvantages. Reactive oxygen species, such as H2O2, in high concentrations, can cause cytotoxicity to cells, being even greater in cancer cells. One of the H2O2-producing enzymes is glucose oxidase; its application in cancer treatment should be explored. In this work, the extracellular expression of the mutated recombinant enzyme glucose oxidase was carried out in the eukaryotic expression system Pichia pastoris SMD1168, through the modification and optimization of the gox gene of Aspergillus niger to improve its expression in yeast and its purification. Also, the secretion signal of the alpha-mating factor from Saccharomyces cerevisiae was added to the gene for extracellular expression, and it was inserted into the expression vector pPIC3.5k. The extracellular expression of the enzyme facilitated purification by anion exchange chromatography; the purification was corroborated by SDS-PAGE, with a molecular weight of its subunit between 63 kDa and 100 kDa. The mutated recombinant enzyme glucose oxidase showed greater anticancer activity compared to the commercial glucose oxidase and could have potential for cancer treatment. KEY POINTS: • Pichia pastoris is an excellent eukaryotic expression system for proteins that need post-translational modifications. • Extracellular expression facilitates protein purification. • Glucose oxidase has potential application in cancer treatment.


Subject(s)
Glucose Oxidase , Saccharomyces cerevisiae , Hydrogen Peroxide , Pichia/genetics , Recombinant Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomycetales
3.
PeerJ ; 7: e8142, 2019.
Article in English | MEDLINE | ID: mdl-31844570

ABSTRACT

In this study, silver nanoparticles (NP) were synthesized by two methods: using an aqueous extract of Mentha spicata leaves and using citrate ions as stabilizing agent, and the cytotoxicity and anticancer activity of both NP were evaluated in vitro. The particles synthesized with the aqueous extract were spherical with a size ranging from 15 to 45 nm. These NP decreased cell viability in all of the cells studied; however, the IC50 could only be estimated in the Chang liver cells (IC50 = 21.37 µg/mL). These particles also decreased the generation of reactive oxygen species in Chang and SiHa cells. Additionally, the dispersions decreased the activity of caspase-3. There was no significant difference between the biological activities of the NP obtained with the aqueous extract and the NP synthesized using citrate ions. This study showed that an aqueous extract of M. spicata is an excellent alternative for the synthesis of silver NP. These NP showed cytotoxicity and anticancer activity in vitro. Although more experiments are required, the cell death occurs probably through a mechanism different from apoptosis.

4.
Biomed Pharmacother ; 82: 327-36, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27470370

ABSTRACT

Four novel unsymmetrical A3B porphyrins 1, 2, 3 and 4 were synthesized following Lindsey procedure. Porphyrins 3 and 4 include one and three l-glutamate groups, respectively, and all porphyrins were metallated with Zn(II) (1a-4a) or Cu(II) (1b-4b). Porphyrins and metalloporphyrins presented values of singlet oxygen quantum yields (ΦD) ranging from 0.21 to 0.67. The tetraaryl derivatives in this study showed phototoxicity in SiHa cells with IC50 values ranging from <0.01 to 6.56±0.11µM, the metalloporphyrin 4a showed the lowest IC50 value. Comparing the phototoxic activity between all porphyrins, functionalization of porphyrins with glutamate increased 100 times phototoxic activity (1 (IC50 4.81±0.34µM) vs. 3 (IC50 0.04±0.02µM) and 2 (IC50 5.19±0.42µM) vs. 4 (IC50 0.05±0.01µM)). This increased activity could be attributed to reduced hydrophobicity and increased ΦΔ, given by functionalization with l-glutamate. Metalloporphyrins 3a (IC50 0.04±0.01µM) and 4a (IC50<0.01µM) presented the best values ​​of phototoxic activity. Therefore, functionalization and zinc metalation increased the phototoxic activity. SiHa cells treated with porphyrins 3, 4, 3a and 4a at a final concentration of 10µM, showed increased activity of caspase-3 enzyme compared to the negative control; indicating the induction of apoptosis. Differential gene expression pattern in SiHa cells was determined; treatments with metalloporphyrins 4a and 4b were performed, respectively, comparing the expression with untreated control. Treatments in both cases showed similar gene expression pattern in upregulated genes, since they share about 25 biological pathways and a large number of genes. According to the new photophysical properties related to the structural improvement and phototoxic activity, these molecules may have the potential application as photosensitizers in the photodynamic therapy.


Subject(s)
Coordination Complexes/chemical synthesis , Copper/pharmacology , Glutamic Acid/chemistry , Metalloporphyrins/pharmacology , Photochemotherapy , Zinc/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitory Concentration 50 , Light , Metalloporphyrins/chemical synthesis , Metalloporphyrins/chemistry , Singlet Oxygen/analysis , Up-Regulation/drug effects
5.
Molecules ; 21(2): 247, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26907240

ABSTRACT

Presently the search for new drugs from natural resources is of growing interest to the pharmaceutical industry. Natural products have been the source of new drugs since ancient times. Plants are a good source of secondary metabolites which have been found to have beneficial properties. The present study is a review of the chemistry and pharmacology of Citrus sinensis. This review reveals the therapeutic potential of C. sinensis as a source of natural compounds with important activities that are beneficial for human health that could be used to develop new drugs.


Subject(s)
Biological Products/chemistry , Citrus sinensis/chemistry , Drug Discovery , Biological Products/therapeutic use , Humans
6.
Phytother Res ; 22(1): 82-5, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17726732

ABSTRACT

Tuberculosis (TB) kills about 3 million people per year worldwide. Furthermore, TB is an infectious disease associated with HIV patients, and there is a rise in multidrug-resistant TB (MDR-TB) cases around the world. There is a need for new anti-TB agents. The study evaluated the antimycobacterial activity of nine plants used in Mexican traditional medicine to treat tuberculosis and other respiratory diseases. Nasturtium officinale showed the best activity (MIC = 100 microg/mL) against the sensitive Mycobacterium tuberculosis. The following plants were active also but at 200 microg/mL: Citrus sinensis, Citrus aurantifolia, Foeniculum vulgare, Larrea tridentata, Musa acuminata and Olea europaea. Contrary to the above data, activity against drug-resistant variants of M. tuberculosis was more evident, e.g. N. officinale was the most potent (MIC < or = 100 microg/mL) against the four mono-resistant variants tested; F. vulgare and O. europaea were active against all the resistant variants (MICs < or = 100 microg/mL). The most susceptible variant was the isoniazid resistant, being inhibited by C. aurantifolia, C. sinensis and O. europaea (MIC = 25 microg/mL). These data point to the importance of biological testing of extracts against drug-resistant M. tuberculosis isolates, and the bioguided assay of these extracts for the identification of lead compounds against MDR-TB isolates.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Plant Extracts/pharmacology , Tuberculosis, Multidrug-Resistant/microbiology , Antitubercular Agents/chemistry , Citrus sinensis/chemistry , Foeniculum/chemistry , Humans , Larrea/chemistry , Medicine, Traditional , Mexico , Microbial Sensitivity Tests , Musa/chemistry , Nasturtium/chemistry , Olea/chemistry , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Respiration Disorders/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...