Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pure Appl Geophys ; 179(4): 1117-1137, 2022.
Article in English | MEDLINE | ID: mdl-35431340

ABSTRACT

The massive explosion by the January 15, 2022 Hunga Tonga-Hunga Ha'apai volcano in Tonga triggered a trans-oceanic tsunami generated by coupled ocean and atmospheric shock waves during the explosion. The tsunami reached first the coast of Tonga, and later many coasts around the world. The shock wave went around the globe, causing sea perturbations as far as the Caribbean and the Mediterranean seas. We present the effects of the January 15, 2022 Tonga tsunami on the Mexican Pacific Coast, Gulf of Mexico, and Mexican Caribbean coast, and discuss the underrated hazard caused by great volcanic explosions, and the role of early tsunami warning systems, in particular in Mexico. The shock wave took about 7.5 h to reach the coast of Mexico, located about 9000 km away from the volcano, and the signal lasted several hours, about 133 h (5.13 days). The shock wave was the only cause for sea alterations on the Gulf of Mexico and Caribbean Sea, while at the Mexican Pacific coast both shock wave and the triggered tsunami by the volcano eruption and collapse affected this coast. The first tsunami waves recorded on the Mexican Pacific coast arrived around 12:35 on January 15, at the Lázaro Cárdenas, Michoacán tide gauge station. The maximum tsunami height exceeded 2 m at the Ensenada, Baja California, and Manzanillo, Colima, tide gauge stations. Most tsunami warning advisories, with two exceptions, reached communities via social media (Twitter and Facebook), but did not clearly state that people must stay away from the shore. We suggest that, although no casualties were reported in Mexico, tsunami warning advisories of far-field tsunamis and those triggered non-seismic sources, such as landslides and volcanic eruptions, should be included and improved to reach coastal communities timely, explaining the associated hazards on the coast. Supplementary Information: The online version contains supplementary material available at 10.1007/s00024-022-03017-9.

2.
Sci Rep ; 11(1): 19334, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588548

ABSTRACT

Landslide detection and susceptibility mapping are crucial in risk management and urban planning. Constant advance in digital elevation models accuracy and availability, the prospect of automatic landslide detection, together with variable processing techniques, stress the need to assess the effect of differences in input data on the landslide susceptibility maps accuracy. The main goal of this study is to evaluate the influence of variations in input data on landslide susceptibility mapping using a logistic regression approach. We produced 32 models that differ in (1) type of landslide inventory (manual or automatic), (2) spatial resolution of the topographic input data, (3) number of landslide-causing factors, and (4) sampling technique. We showed that models based on automatic landslide inventory present comparable overall prediction accuracy as those produced using manually detected features. We also demonstrated that finer resolution of topographic data leads to more accurate and precise susceptibility models. The impact of the number of landslide-causing factors used for calculations appears to be important for lower resolution data. On the other hand, even the lower number of causative agents results in highly accurate susceptibility maps for the high-resolution topographic data. Our results also suggest that sampling from landslide masses is generally more befitting than sampling from the landslide mass center. We conclude that most of the produced landslide susceptibility models, even though variable, present reasonable overall prediction accuracy, suggesting that the most congruous input data and techniques need to be chosen depending on the data quality and purpose of the study.

3.
Sci Rep ; 10(1): 11452, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651547

ABSTRACT

Globally, instrumentally based assessments of tsunamigenic potential of subduction zones have underestimated the magnitude and frequency of great events because of their short time record. Historical and sediment records of large earthquakes and tsunamis have expanded the temporal data and estimated size of these events. Instrumental records suggests that the Mexican Subduction earthquakes produce relatively small tsunamis, however historical records and now geologic evidence suggest that great earthquakes and tsunamis have whipped the Pacific coast of Mexico in the past. The sediment marks of centuries old-tsunamis validate historical records and indicate that large tsunamigenic earthquakes have shaken the Guerrero-Oaxaca region in southern Mexico and had an impact on a bigger stretch of the coast than previously suspected. We present the first geologic evidence of great tsunamis near the trench of a subduction zone previously underestimated as potential source for great earthquakes and tsunamis. Two sandy tsunami deposits extend over 1.5 km inland of the coast. The youngest tsunami deposit is associated with the 1787 great earthquake, M 8.6, producing a giant tsunami that poured over the coast flooding 500 km alongshore the Mexican Pacific coast and up to 6 km inland. The oldest event from a less historically documented event occurred in 1537. The 1787 earthquake, and tsunami and a probable predecessor in 1537, suggest a plausible recurrence interval of 250 years. We prove that the common believe that great tsunamis do not occur on the Mexican Pacific coast cannot be sustained.

SELECTION OF CITATIONS
SEARCH DETAIL
...