Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 215: 290-302, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35718158

ABSTRACT

Pod borer, Helicoverpa armigera, a polyphagus herbivore causes extensive economic losses to crops, including pigeonpea. Exploitation of pod borer resistance in wild relatives is pertinent due to the absence of resistance sources in cultivated pigeonpea and crossing-incompatibility with the resistant wild relatives. We present leads obtained in deeper understanding of pod borer resistance mechanism in Cajanus platycarpus, a pigeonpea wild relative. Surge in cellular ROS during herbivory leads to redox-PTMs (post translational modifications) of methionine-rich proteins including antioxidant enzymes, causing oxidative damage. Plants then officiate methionine sulfoxide reductases (MSRs), that maintain the redox status of methionine and hence homeostasis. We demonstrate functionality of MSRs (MSRA and MSRB) in the resistance response of the wild relative to pod borer. Among 5 MSRA and 3 MSRB genes, CpMSRA2 and CpMSRB1 were herbivore-responsive based on expression during herbivory. Clues about the stress-responsiveness were obtained upon analyses of cis-elements and co-expressing genes. Apparently, the wild relative followed a non-canonical mode of redox management, as divulged by antioxidant enzymes and the scavenging capacity. Differential lipid peroxidation as an early response provided evidences for an effective redox management in the wild relative. This is the first report signifying redox homeostasis in the resistance response towards herbivory.


Subject(s)
Cajanus , Moths , Animals , Antioxidants/metabolism , Cajanus/genetics , Homeostasis , Methionine/metabolism , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , Moths/metabolism , Oxidation-Reduction
2.
Int J Biol Macromol ; 195: 207-216, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34890636

ABSTRACT

Pearl millet is a nutrient dense and gluten free cereal, however it's flour remains underutilized due to the onset of rancidity during its storage. To the best of our knowledge, processing methods, which could significantly reduce the rancidity of the pearl millet flour during storage, are non-existent. In this study, pearl millet grains were subjected to a preliminary hydro-treatment (HT). Subsequently, the hydrated grain-wet flour have undergone individual and combined thermal treatments viz., hydrothermal (HTh) and thermal near infrared rays (thNIR). Effects of these thermal treatments on the biochemical process of hydrolytic and oxidative rancidity were analyzed in stored flour. A significant (p < 0.05) decrease in the enzyme activities of lipase (47.8%), lipoxygenase (84.8%), peroxidase (98.1%) and polyphenol oxidase (100%) in HT-HTh-thNIR treated flour compared to the individual treatments was documented. Upon storage (90 days), decline of 67.84% and 66.4% of free fatty acid and peroxide contents were observed in flour under HT-HTh-thNIR treatment without altering starch and protein digestibility properties. HT-HTh treated flour exhibited the highest (7.6%) rapidly digestible starch, decreased viscosity and increased starch digestibility (67.17%). FTIR analysis of HT-HTh treated flour divulged destabilization of short-range ordered crystalline structure and altered protein structures with decreased in vitro digestibility of protein. Overall, these results demonstrated the effectiveness of combined thermal treatment of HT-HTh-thNIR in reducing rancidity and preserving the functional properties of the stored flour.


Subject(s)
Food Handling/methods , Pennisetum/metabolism , Starch/chemistry , Catechol Oxidase , Digestion , Edible Grain , Flour/analysis , Hot Temperature , Lipoxygenase
3.
Plant Physiol Biochem ; 144: 375-385, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31622940

ABSTRACT

Soybeans are known for its good source of protein (40%), oil (20%) and also serve as a source of nutraceutical compounds including tocopherols (toc). To know the molecular basis of differential α-toc accumulation in two contrasting soybean genotypes: DS74 (low α-toc - 1.36 µg/g and total-toc -29.72 µg/g) and Bragg (high α-toc - 10.48 µg/g and total-toc 178.91 µg/g), the analysis of γ-TMT3 promoter activity and its methylation patterns were carried out. The sequencing results revealed nucleotide variation between Bragg:γ-TMT3-P and DS74:γ-TMT3-P, however none of the variations were found in core-promoter region or in cis-elements. The histochemical GUS assay revealed higher promoter activity of Bragg:γ-TMT3-P than that of DS74:γ-TMT3-P and correlated with significantly higher and lower (P < 0.05) expression of γ-TMT3 gene respectively. To know the molecular basis of differential accumulation of α-toc in these contrasting soybean genotypes, the DNA methylation pattern of γ-TMT3 gene body and its promoter was studied in both varieties. The results showed higher percentage (62.5%) of methylation in DS74:γ-TMT3-P than in Bragg:γ-TMT3-P (50%). Out of all the methylation sites in the promoter region, one of methylation site was found at CAAT box (-190 bp) of DS74:γ-TMT3-P. Further gene body methylation patterns revealed lowest % (40%) of CG methylation in DS74:γ-TMT3 gene as compared to Bragg:γ-TMT3 (64.2%). Thus our study revealed that, expression of γ-TMT3 gene was influenced by its promoter activity and methylation patterns in cis-elements of γ-TMT3 promoter and gene body. This study will help us to understand the possible role of methylation and promoter activity in determining the α-toc content in soybean seeds.


Subject(s)
Glycine max/metabolism , Tocopherols/metabolism , alpha-Tocopherol/metabolism , gamma-Tocopherol/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Promoter Regions, Genetic/genetics
4.
J Plant Biochem Biotechnol ; 21: 98-112, 2012.
Article in English | MEDLINE | ID: mdl-24431589

ABSTRACT

Pigeonpea (Cajanus cajan) is an important grain legume of the Indian subcontinent, South-East Asia and East Africa. More than eighty five percent of the world pigeonpea is produced and consumed in India where it is a key crop for food and nutritional security of the people. Here we present the first draft of the genome sequence of a popular pigeonpea variety 'Asha'. The genome was assembled using long sequence reads of 454 GS-FLX sequencing chemistry with mean read lengths of >550 bp and >10-fold genome coverage, resulting in 510,809,477 bp of high quality sequence. Total 47,004 protein coding genes and 12,511 transposable elements related genes were predicted. We identified 1,213 disease resistance/defense response genes and 152 abiotic stress tolerance genes in the pigeonpea genome that make it a hardy crop. In comparison to soybean, pigeonpea has relatively fewer number of genes for lipid biosynthesis and larger number of genes for cellulose synthesis. The sequence contigs were arranged in to 59,681 scaffolds, which were anchored to eleven chromosomes of pigeonpea with 347 genic-SNP markers of an intra-species reference genetic map. Eleven pigeonpea chromosomes showed low but significant synteny with the twenty chromosomes of soybean. The genome sequence was used to identify large number of hypervariable 'Arhar' simple sequence repeat (HASSR) markers, 437 of which were experimentally validated for PCR amplification and high rate of polymorphism among pigeonpea varieties. These markers will be useful for fingerprinting and diversity analysis of pigeonpea germplasm and molecular breeding applications. This is the first plant genome sequence completed entirely through a network of Indian institutions led by the Indian Council of Agricultural Research and provides a valuable resource for the pigeonpea variety improvement.

SELECTION OF CITATIONS
SEARCH DETAIL
...