Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Biochem Biotechnol ; 195(10): 6421-6439, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37450215

ABSTRACT

Today, the search for solutions to reduce wound infection and restore wound receptivity also reduces its side effects which are a difficult problem in medical science research. The greatest options for this purpose are hydrogel dressings since they are compatible with tissue and have an antibacterial effect on wound healing. Chronic wounds represent a significant burden on people and healthcare systems worldwide. Bacteria often enter such skin wounds, causing irritation and complicating the healing process. In addition, bacteria cause infection, which inhibits rejuvenation and the production of collagen. This study is aimed at developing novel chitosan (CS)-hydrolyzed starch nanocomposite (HS/Ch-NC) loaded with ciprofloxacin to enhance its skin retention and wound healing efficacy and anti-biofilm efficacy. Drug-loading on the (HS/Ch-NC) and encapsulation efficiency was 55.2% and 97.2%, respectively. The activity of HS-NC loaded with ciprofloxacin as anti-biofilm activity by 72% and 63% against Enterobacter aerogenes and Pseudomonas aeruginosa, respectively. The obtained (HS/Ch-NC) loaded with ciprofloxacin is a promising candidate for the development of improved bandage materials, as cell viability and proliferation was assessed using an SRB assay with half-maximal inhibitory concentrations (IC50) at 119.1 µg/ml. In vitro scratch wound healing assay revealed significant (p ≤ 0.05) acceleration in wound closure at 24 h enhanced by 56.04% 24-h and 100% 72-h post-exposure to (HS/Ch-NC) loaded ciprofloxacin, compared to the negative control. In vivo skin retention study revealed that (HS/Ch-NC)-loaded ciprofloxacin showed 3.65-fold higher retention, respectively, than ciprofloxacin. Thus, our study assumes that ciprofloxacin-loaded HS-NC is a potential delivery system for enhancing ciprofloxacin skin retention and wound healing activity.


Subject(s)
Chitosan , Nanocomposites , Humans , Ciprofloxacin/pharmacology , Starch , Anti-Bacterial Agents/pharmacology , Bandages
2.
Appl Biochem Biotechnol ; 195(1): 467-485, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36087233

ABSTRACT

Mycosynthesis of nanoparticle (NP) production is a potential ecofriendly technology for large scale production. In the present study, copper oxide nanoparticles (CuONPs) have been synthesized from the live cell filtrate of the fungus Penicillium chrysogenum. The created CuONPs were characterized via several techniques, namely Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the biosynthesized CuONPs were performed against biofilm forming Klebsiella oxytoca ATCC 51,983, Escherichia coli ATCC 35,218, Staphylococcus aureus ATCC 25,923, and Bacillus cereus ATCC 11,778. The anti-bacterial activity result was shown with the zone of inhibition determined to be 14 ± 0.31 mm, 16 ± 0.53 mm, 11 ± 0.57 mm, and 10 ± 0.57 mm respectively. Klebsiella oxytoca and Escherichia coli were more susceptible to CuONPs with minimal inhibitory concentration (MIC) values 6.25 and 3.12 µg/mL, respectively, while for Staphylococcus aureus and Bacillus cereus, MIC value was 12.5 and 25 µg/mL, respectively. The minimum biofilm inhibition concentration (MBIC) result was more evident, that the CuONPs have excellent anti-biofilm activity at sub-MIC levels reducing biofilm formation by 49% and 59% against Klebsiella oxytoca and Escherichia coli, while the results indicated that the MBIC of CuONPs on Bacillus cereus and Staphylococcus aureus was higher than 200 µg/mL and 256 µg/mL, respectively, suggesting that these CuONPs could not inhibit mature formatted biofilm of Bacillus cereus and Staphylococcus aureus in vitro. Overall, all the results were clearly confirmed that the CuONPs have excellent anti-biofilm ability against Klebsiella oxytoca and Escherichia coli. The prepared CuONPs offer a smart approach for biomedical therapy of resistant microorganisms because of its promoted antimicrobial action, but only for specified purposes.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Copper/pharmacology , Copper/chemistry , Metal Nanoparticles/chemistry , Staphylococcus aureus , Microbial Sensitivity Tests , Escherichia coli , Biofilms , Oxides , Spectroscopy, Fourier Transform Infrared , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL