Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(20): 14505-14513, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38741560

ABSTRACT

We embark on a quest to identify small molecules in the chemical space that can potentially violate Hund's rule. Utilizing twelve TDDFT approximations and the ADC(2) many-body method, we report the energies of S1 and T1 excited states of 12 880 closed-shell organic molecules within the bigQM7ω dataset with up to 7 CONF atoms. In this comprehensive dataset, none of the molecules, in their minimum energy geometry, exhibit a negative S1-T1 energy gap at the ADC(2) level while several molecules display values <0.1 eV. The spin-component-scaled double-hybrid method, SCS-PBE-QIDH, demonstrates the best agreement with ADC(2). Yet, at this level, a few molecules with a strained sp3-N center turn out as false-positives with the S1 state lower in energy than T1. We investigate a prototypical cage molecule with an energy gap <-0.2 eV, which a closer examination revealed as another false positive. We conclude that in the chemical space of small closed-shell organic molecules, it is possible to identify geometric and electronic structural features giving rise to S1-T1 degeneracy; still, there is no evidence of a negative gap. We share the dataset generated for this study as a module, to facilitate seamless molecular discovery through data mining.

2.
Chem Commun (Camb) ; 60(19): 2613-2616, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38265468

ABSTRACT

Melanin is a biopolymer pigment that plays a central role in skin photoprotection. Its extensive chemical and dynamical heterogeneity imparts this property through a broad featureless ultraviolet/visible absorption spectrum. Conventionally, the rational design of synthetic photoprotective pigments revolves around establishing the structure-spectra correlation and developing biomimetic materials with desired optical properties. This approach fails to explain the mechanistic details of melanin's absorption spectrum because it arises from an ensemble of structures rather than a local minimum on the potential energy surface. Here, we propose an inverse design approach to elucidate the contributions of dominant chromophoric units in various wavelength domains of the melanin spectrum.


Subject(s)
Melanins , Skin , Melanins/chemistry , Light
3.
J Chem Phys ; 159(12)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-38127393

ABSTRACT

We apply an Ising-type model to estimate the bandgaps of the polytypes of group IV elements (C, Si, and Ge) and binary compounds of groups: IV-IV (SiC, GeC, and GeSi), and III-V (nitride, phosphide, and arsenide of B, Al, and Ga). The models use reference bandgaps of the simplest polytypes comprising 2-6 bilayers calculated with the hybrid density functional approximation, HSE06. We report four models capable of estimating bandgaps of nine polytypes containing 7 and 8 bilayers with an average error of ≲0.05 eV. We apply the best model with an error of <0.04 eV to predict the bandgaps of 497 polytypes with up to 15 bilayers in the unit cell, providing a comprehensive view of the variation in the electronic structure with the degree of hexagonality of the crystal structure. Within our enumeration, we identify four rhombohedral polytypes of SiC-9R, 12R, 15R(1), and 15R(2)-and perform detailed stability and band structure analysis. Of these, 15R(1) that has not been experimentally characterized has the widest bandgap (>3.4 eV); phonon analysis and cohesive energy reveal 15R(1)-SiC to be metastable. Additionally, we model the energies of valence and conduction bands of the rhombohedral SiC phases at the high-symmetry points of the Brillouin zone and predict band structure characteristics around the Fermi level. The models presented in this study may aid in identifying polytypic phases suitable for various applications, such as the design of wide-gap materials, that are relevant to high-voltage applications. In particular, the method holds promise for forecasting electronic properties of long-period and ultra-long-period polytypes for which accurate first-principles modeling is computationally challenging.

4.
Phys Chem Chem Phys ; 25(40): 27302-27320, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37791466

ABSTRACT

The hydroperoxyalkyl radicals (˙QOOH) are known to play a significant role in combustion and tropospheric processes, yet their direct spectroscopic detection remains challenging. In this study, we investigate molecular stereo-electronic effects influencing the kinetic and thermodynamic stability of a ˙QOOH along its formation path from the precursor, alkylperoxyl radical (ROO˙), and the depletion path resulting in the formation of cyclic ether + ˙OH. We focus on reactive intermediates encountered in the oxidation of acyclic hydrocarbon radicals: ethyl, isopropyl, isobutyl, tert-butyl, neopentyl, and their alicyclic counterparts: cyclohexyl, cyclohexenyl, and cyclohexadienyl. We report reaction energies and barriers calculated with the highly accurate method Weizmann-1 (W1) for the channels: ROO˙ ⇌ ˙QOOH, ROO˙ ⇌ alkene + ˙OOH, ˙QOOH ⇌ alkene + ˙OOH, and ˙QOOH ⇌ cyclic ether + ˙OH. Using W1 results as a reference, we have systematically benchmarked the accuracy of popular density functional theory (DFT), composite thermochemistry methods, and an explicitly correlated coupled-cluster method. We ascertain inductive, resonance, and steric effects on the overall stability of ˙QOOH and computationally investigate the possibility of forming more stable species. With new reactions as test cases, we probe the capacity of various ab initio methods to yield quantitative insights on the elementary steps of combustion.

5.
Chem Commun (Camb) ; 59(44): 6698-6701, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37183853

ABSTRACT

Reduction of 2-H-substituted pyrrolinium cations via initially formed secondary radicals results in either dimerisation or H-abstracted products, while the outcome depends on the N-substituents. The resultant central carbon-carbon single bond in the dimerised 2,2'-bipyrrolidine derivatives can be oxidised chemically and electrochemically. The notably air and moisture-stable dimers were subsequently utilised as a source of two electrons in various chemical transformations.

6.
J Phys Chem B ; 127(3): 648-660, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36638237

ABSTRACT

Intramolecular ion-pair interactions yield shape and functionality to many molecules. With proper orientation, these interactions overcome steric factors and are responsible for the compact structures of several peptides. In this study, we present a thermodynamic cycle based on isoelectronic and alchemical mutation to estimate the intramolecular ion-pair interaction energy. We determine these energies for 26 benchmark molecules with common ion-pair combinations and compare them with results obtained using intramolecular symmetry-adapted perturbation theory. For systems with long linkers, the ion-pair energies evaluated using both approaches deviate by less than 2.5% in the vacuum phase. The thermodynamic cycle based on density functional theory facilitates calculations of salt-bridge interactions in model tripeptides with continuum/microsolvation modeling and four large peptides: 1EJG (crambin), 1BDK (bradykinin), 1L2Y (a mini-protein with a tryptophan cage), and 1SCO (a toxin from the scorpion venom).

7.
Chem Sci ; 12(15): 5566-5573, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-34163773

ABSTRACT

A key challenge in automated chemical compound space explorations is ensuring veracity in minimum energy geometries-to preserve intended bonding connectivities. We discuss an iterative high-throughput workflow for connectivity preserving geometry optimizations exploiting the nearness between quantum mechanical models. The methodology is benchmarked on the QM9 dataset comprising DFT-level properties of 133 885 small molecules, wherein 3054 have questionable geometric stability. Of these, we successfully troubleshoot 2988 molecules while maintaining a bijective mapping with the Lewis formulae. Our workflow, based on DFT and post-DFT methods, identifies 66 molecules as unstable; 52 contain -NNO-, and the rest are strained due to pyramidal sp2 C. In the curated dataset, we inspect molecules with long C-C bonds and identify ultralong candidates (r > 1.70 Å) supported by topological analysis of electron density. The proposed strategy can aid in minimizing unintended structural rearrangements during quantum chemistry big data generation.

8.
J Chem Phys ; 154(6): 061102, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33588537

ABSTRACT

Soft-phonon modes of an undistorted phase encode a material's preference for symmetry lowering. However, the evidence is sparse for the relationship between an unstable phonon wavevector's reciprocal and the number of formula units in the stable distorted phase. This "1/q*-criterion" holds great potential for the first-principles design of materials, especially in low-dimension. We validate the approach on the Q1D organometallic materials space containing 1199 ring-metal units and identify candidates that are stable in undistorted (1 unit), Peierls (2 units), charge density wave (3-5 units), or long wave (>5 units) phases. We highlight materials exhibiting gap-opening as well as an uncommon gap-closing Peierls transition and discuss an example case stabilized as a charge density wave insulator. We present the data generated for this study through an interactive publicly accessible Big Data analytics platform (https://moldis.tifrh.res.in/data/rmq1d) facilitating limitless and seamless data-mining explorations.

9.
J Chem Phys ; 154(4): 044113, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33514111

ABSTRACT

First-principles calculation of the standard formation enthalpy, ΔHf° (298 K), in such a large scale as required by chemical space explorations, is amenable only with density functional approximations (DFAs) and certain composite wave function theories (cWFTs). Unfortunately, the accuracies of popular range-separated hybrid, "rung-4" DFAs, and cWFTs that offer the best accuracy-vs-cost trade-off have until now been established only for datasets predominantly comprising small molecules; their transferability to larger systems remains vague. In this study, we present an extended benchmark dataset of ΔHf° for structurally and electronically diverse molecules. We apply quartile-ranking based on boundary-corrected kernel density estimation to filter outliers and arrive at probabilistically pruned enthalpies of 1694 compounds (PPE1694). For this dataset, we rank the prediction accuracies of G4, G4(MP2), ccCA, CBS-QB3, and 23 popular DFAs using conventional and probabilistic error metrics. We discuss systematic prediction errors and highlight the role an empirical higher-level correction plays in the G4(MP2) model. Furthermore, we comment on uncertainties associated with the reference empirical data for atoms and the systematic errors stemming from these that grow with the molecular size. We believe that these findings will aid in identifying meaningful application domains for quantum thermochemical methods.

10.
J Chem Phys ; 155(24): 244102, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34972385

ABSTRACT

Derivatives of BODIPY are popular fluorophores due to their synthetic feasibility, structural rigidity, high quantum yield, and tunable spectroscopic properties. While the characteristic absorption maximum of BODIPY is at 2.5 eV, combinations of functional groups and substitution sites can shift the peak position by ±1 eV. Time-dependent long-range corrected hybrid density functional methods can model the lowest excitation energies offering a semi-quantitative precision of ±0.3 eV. Alas, the chemical space of BODIPYs stemming from combinatorial introduction of-even a few dozen-substituents is too large for brute-force high-throughput modeling. To navigate this vast space, we select 77 412 molecules and train a kernel-based quantum machine learning model providing <2% hold-out error. Further reuse of the results presented here to navigate the entire BODIPY universe comprising over 253 giga (253 × 109) molecules is demonstrated by inverse-designing candidates with desired target excitation energies.

12.
Phys Chem Chem Phys ; 22(24): 13431-13439, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32515452

ABSTRACT

The Diels-Alder cycloaddition, in which a diene reacts with a dienophile to form a cyclic compound, counts among the most important tools in organic synthesis. Achieving a precise understanding of its mechanistic details on the quantum level requires new experimental and theoretical methods. Here, we present an experimental approach that separates different diene conformers in a molecular beam as a prerequisite for the investigation of their individual cycloaddition reaction kinetics and dynamics under single-collision conditions in the gas phase. A low- and high-level quantum-chemistry-based screening of more than one hundred dienes identified 2,3-dibromobutadiene (DBB) as an optimal candidate for efficient separation of its gauche and s-trans conformers by electrostatic deflection. A preparation method for DBB was developed which enabled the generation of dense molecular beams of this compound. The theoretical predictions of the molecular properties of DBB were validated by the successful separation of the conformers in the molecular beam. A marked difference in photofragment ion yields of the two conformers upon femtosecond-laser pulse ionization was observed, pointing at a pronounced conformer-specific fragmentation dynamics of ionized DBB. Our work sets the stage for a rigorous examination of mechanistic models of cycloaddition reactions under controlled conditions in the gas phase.

13.
J Chem Phys ; 152(19): 194111, 2020 May 21.
Article in English | MEDLINE | ID: mdl-33687234

ABSTRACT

Many-electron wavepacket dynamics based on time-dependent configuration interaction (TDCI) is a numerically rigorous approach to quantitatively model electron transfer across molecular junctions. TDCI simulations of cyanobenzene thiolates-para- and meta-linked to an acceptor gold atom-show donor states conjugating with the benzene π-network to allow better through-molecule electron migration in the para isomer compared to the meta counterpart. For dynamics involving non-conjugating states, we find electron injection to stem exclusively from distance-dependent non-resonant quantum mechanical tunneling, in which case the meta isomer exhibits better dynamics. The computed trend in donor-to-acceptor net-electron transfer through differently linked azulene bridges agrees with the trend seen in low-bias conductivity measurements. Disruption of π-conjugation has been shown to be the cause of diminished electron injection through 1,3-azulene, a pathological case for a graph-based diagnosis of the destructive quantum interference. Furthermore, we demonstrate the quantum interference of many-electron wavefunctions to drive para-vs-meta selectivity in the coherent evolution of superposed π(CN)- and σ(NC-C)-type wavepackets. Analyses reveal that in the para-linked benzene, σ and π MOs localized at the donor terminal are in-phase, leading to the constructive interference of electron density distribution, while the phase-flip of one of the MOs in the meta isomer results in the destructive interference. These findings suggest that a priori detection of orbital phase-flip and quantum coherence conditions can aid in molecular device design strategies.

14.
J Chem Phys ; 150(14): 144114, 2019 Apr 14.
Article in English | MEDLINE | ID: mdl-30981252

ABSTRACT

In principle, many-electron correlation energy can be precisely computed from a reduced Wigner distribution function (W), thanks to a universal functional transformation (F), whose formal existence is akin to that of the exchange-correlation functional in density functional theory. While the exact dependence of F on W is unknown, a few approximate parametric models have been proposed in the past. Here, for a dataset of 923 one-dimensional external potentials with two interacting electrons, we apply machine learning to model F within the kernel Ansatz. We deal with over-fitting of the kernel to a specific region of phase-space by a one-step regularization not depending on any hyperparameters. Reference correlation energies have been computed by performing exact and Hartree-Fock calculations using discrete variable representation. The resulting models require W calculated at the Hartree-Fock level as input while yielding monotonous decay in the predicted correlation energies of new molecules reaching sub-chemical accuracy with training.

15.
J Chem Phys ; 150(11): 114106, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30902009

ABSTRACT

Combinatorial introduction of heteroatoms in the two-dimensional framework of aromatic hydrocarbons opens up possibilities to design compound libraries exhibiting desirable photovoltaic and photochemical properties. Exhaustive enumeration and first-principles characterization of this chemical space provide indispensable insights for rational compound design strategies. Here, for the smallest seventy-seven Kekulean-benzenoid polycyclic systems, we reveal combinatorial substitution of C atom pairs with the isosteric and isoelectronic B, N pairs to result in 7 453 041 547 842 (7.4 tera) unique molecules. We present comprehensive frequency distributions of this chemical space, analyze trends, and discuss a symmetry-controlled selectivity manifestable in synthesis product yield. Furthermore, by performing high-throughput ab initio density functional theory calculations of over thirty-three thousand (33k) representative molecules, we discuss quantitative trends in the structural stability and inter-property relationships across heteroarenes. Our results indicate a significant fraction of the 33k molecules to be electronically active in the 1.5-2.5 eV region, encompassing the most intense region of the solar spectrum, indicating their suitability as potential light-harvesting molecular components in photo-catalyzed solar cells.

16.
J Chem Theory Comput ; 14(9): 4806-4817, 2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30011363

ABSTRACT

The reliability of popular density functionals was studied for the description of torsional profiles of 36 molecules: glyoxal, oxalyl halides, and their thiocarbonyl derivatives. HF and 18 functionals of varying complexity, from local density to range-separated hybrid approximations and double-hybrid, have been considered and benchmarked against CCSD(T)-level rotational profiles. For molecules containing heavy halogens, most functionals fail to reproduce barrier heights accurately and a number of functionals introduce spurious minima. Dispersion corrections show no improvement. Calibrated torsion-corrected atom-centered potentials rectify the shortcomings of PBE and also improve on σ-hole based intermolecular binding in dimers and crystals.

17.
J Chem Theory Comput ; 14(5): 2341-2352, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29579387

ABSTRACT

We combine the approximate density-functional tight-binding (DFTB) method with unsupervised machine learning. This allows us to improve transferability and accuracy, make use of large quantum chemical data sets for the parametrization, and efficiently automatize the parametrization process of DFTB. For this purpose, generalized pair-potentials are introduced, where the chemical environment is included during the learning process, leading to more specific effective two-body potentials. We train on energies and forces of equilibrium and nonequilibrium structures of 2100 molecules, and test on ∼130 000 organic molecules containing O, N, C, H, and F atoms. Atomization energies of the reference method can be reproduced within an error of ∼2.6 kcal/mol, indicating drastic improvement over standard DFTB.

18.
J Phys Chem Lett ; 8(7): 1351-1359, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28257210

ABSTRACT

The training of molecular models of quantum mechanical properties based on statistical machine learning requires large data sets which exemplify the map from chemical structure to molecular property. Intelligent a priori selection of training examples is often difficult or impossible to achieve, as prior knowledge may be unavailable. Ordinarily representative selection of training molecules from such data sets is achieved through random sampling. We use genetic algorithms for the optimization of training set composition consisting of tens of thousands of small organic molecules. The resulting machine learning models are considerably more accurate: in the limit of small training sets, mean absolute errors for out-of-sample predictions are reduced by up to ∼75%. We discuss and present optimized training sets consisting of 10 molecular classes for all molecular properties studied. We show that these classes can be used to design improved training sets for the generation of machine learning models of the same properties in similar but unrelated molecular sets.

19.
J Chem Phys ; 144(17): 174110, 2016 May 07.
Article in English | MEDLINE | ID: mdl-27155628

ABSTRACT

We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSiP, HSiAs, HGeN, HGeP, HGeAs); and (v) H2 (+) single bond with 1 electron.

20.
Chimia (Aarau) ; 69(4): 182-6, 2015.
Article in English | MEDLINE | ID: mdl-26672132

ABSTRACT

We introduce property-independent kernels for machine learning models of arbitrarily many molecular properties. The kernels encode molecular structures for training sets of varying size, as well as similarity measures sufficiently diffuse in chemical space to sample over all training molecules. When provided with the corresponding molecular reference properties, they enable the instantaneous generation of machine learning models which can be systematically improved through the addition of more data. This idea is exemplified for single kernel based modeling of internal energy, enthalpy, free energy, heat capacity, polarizability, electronic spread, zero-point vibrational energy, energies of frontier orbitals, HOMO-LUMO gap, and the highest fundamental vibrational wavenumber. Models of these properties are trained and tested using 112,000 organic molecules of similar size. The resulting models are discussed as well as the kernels' use for generating and using other property models.

SELECTION OF CITATIONS
SEARCH DETAIL
...