Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Eng Mater ; 2(5): 1315-1323, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38808268

ABSTRACT

Coal, a crucial natural resource traditionally employed for generating carbon-rich materials and powering global industries, has faced escalating scrutiny due to its adverse environmental impacts outweighing its utility in the contemporary world. In response to the worldwide shift toward sustainability, the United States alone has witnessed an approximate 50% reduction in coal consumption. Nevertheless, the ample availability of coal has spurred interest in identifying alternative sustainable applications. This research delves into the feasibility of utilizing coal as a nonconventional carbon-rich reinforcement in direct ink writing (DIW)-based 3D printing techniques. Our investigation here involves a thermosetting resin serving as a matrix, incorporating pulverized coal (250 µm in size) and carbon black as the reinforcement and a viscosity modifier, respectively. The ink formulation is meticulously designed to exhibit shear-thinning behavior essential for DIW 3D printing, ensuring uniform and continuous printing. Mechanical properties are assessed through the 3D printing of ASTM standard specimens to validate the reinforcing impact. Remarkably, the study reveals that a 2 wt % coal concentration in the ink leads to a substantial improvement in both tensile and flexural properties, resulting in enhancements of 35 and 12.5%, respectively. Additionally, the research demonstrates the printability of various geometries with coal as reinforcement, opening up new possibilities for coal utilization while pursuing more sustainable manufacturing and applications.

2.
ACS Sustain Chem Eng ; 12(8): 3243-3255, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38425833

ABSTRACT

Plastics' long degradation time and their role in adding millions of metric tons of plastic waste to our oceans annually present an acute environmental challenge. Handling end-of-life waste from wind turbine blades (WTBs) is equally pressing. Currently, WTB waste often finds its way into landfills, emphasizing the need for recycling and sustainable solutions. Mechanical recycling of composite WTB presents an avenue for the recovery of glass fibers (GF) for repurposing as fillers or reinforcements. The resulting composite materials exhibit improved properties compared to the pure PAN polymer. Through the employment of the dry-jet wet spinning technique, we have successfully manufactured PAN/GF coaxial-layered fibers with a 0.1 wt % GF content in the middle layer. These fibers demonstrate enhanced mechanical properties and a lightweight nature. Most notably, the composite fiber demonstrates a significant 24.4% increase in strength and a 17.7% increase in modulus. These fibers hold vast potential for various industrial applications, particularly in the production of structural components (e.g., electric vehicles), contributing to enhanced performance and energy efficiency.

3.
Small ; 20(6): e2306394, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37775949

ABSTRACT

Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.

4.
Small ; 19(50): e2302718, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37501325

ABSTRACT

Lithium-ion batteries (LIBs) have significantly impacted the daily lives, finding broad applications in various industries such as consumer electronics, electric vehicles, medical devices, aerospace, and power tools. However, they still face issues (i.e., safety due to dendrite propagation, manufacturing cost, random porosities, and basic & planar geometries) that hinder their widespread applications as the demand for LIBs rapidly increases in all sectors due to their high energy and power density values compared to other batteries. Additive manufacturing (AM) is a promising technique for creating precise and programmable structures in energy storage devices. This review first summarizes light, filament, powder, and jetting-based 3D printing methods with the status on current trends and limitations for each AM technology. The paper also delves into 3D printing-enabled electrodes (both anodes and cathodes) and solid-state electrolytes for LIBs, emphasizing the current state-of-the-art materials, manufacturing methods, and properties/performance. Additionally, the current challenges in the AM for electrochemical energy storage (EES) applications, including limited materials, low processing precision, codesign/comanufacturing concepts for complete battery printing, machine learning (ML)/artificial intelligence (AI) for processing optimization and data analysis, environmental risks, and the potential of 4D printing in advanced battery applications, are also presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...